TxgStars / wdcnn
实现的是WDCNN的pytorch版本代码,对应论文的第三章 data包含了四个数据文件夹,这里只使用了0HP文件夹中的数据,里面包含了正常、内圈、外圈、滚动体共10种状态 preprocess.py的功能是对数据进行采样、编码,虽然划分出来了验证集但是并没有使用 train.py定义了用于模型训练以及显示的函数和类 main.py定义了网络模型,调用另外两个py文件获取数据和进行训练 直接运行main.py文件即可得到的结果
☆22Updated 2 years ago
Alternatives and similar repositories for wdcnn:
Users that are interested in wdcnn are comparing it to the libraries listed below
- ☆54Updated last year
- 基于Laplace小波卷积和BiGRU的少量样本故障诊断方法 (Small sample fault diagnosis based on Laplace wavelet convolution and BiGRU)☆52Updated last year
- The intelligent fault diagnosis of HNU IDG☆88Updated 2 years ago
- 基于小波时频图与 Swin Transformer 的轴承故障诊断方法☆36Updated last year
- Deep discriminative transfer learning network for cross-machine fault diagnosis☆95Updated 3 months ago
- A few shot learning repository for bearing fault diagnosis.☆79Updated last year
- The intelligent fault diagnosis methods of HNU IDG☆67Updated 2 years ago
- ☆45Updated 2 years ago
- This reposotory release a bearing failure dataset, which can support intelliegnt fault diagnosis research(实验室自采轴承开源数据集,包含稳定转速和时变转速)☆54Updated 2 months ago
- Physics-informed Interpretable Wavelet Weight Initialization and Balanced Dynamic Adaptive Threshold for Intelligent Fault Diagnosis of R…☆71Updated 10 months ago
- An official code for paper: TFPred: Learning discriminative representations from unlabeled data for few-label rotating machinery fault di…☆54Updated 7 months ago
- 基于机器学习的机械故障诊断☆17Updated last year
- ☆41Updated last month
- this is the open code of paper entitled "TFN: An Interpretable Neural Network With Time Frequency Transform Embedded for Intelligent Faul…☆109Updated last year
- 基于迁移学习DANN模型,对不同工况轴承进行故障诊断☆41Updated 3 years ago
- Transfer learning☆49Updated 3 years ago
- ☆32Updated 2 years ago
- Unsupervised Deep Transfer Learning for Intelligent Fault Diagnosis: An Open Source and Comparative Study (multi_domain))☆49Updated 3 years ago
- This repository is for the Few-shot Learning for the fault diagnosis of large industrial equipment.☆88Updated 2 years ago
- The PyTorch version for Semi-supervised meta-learning networks with squeeze-and-excitation attention for few-shot fault diagnosis.☆56Updated 3 years ago
- 这是一个首层卷积为宽卷积的深度神经网络Deep Convolutional Neural Networks with Wide First-layer Kernels (WDCNN)的实现,该模型具有优越的抗噪能力,可用于轴承的智能故障诊断。☆44Updated last year
- An open-source mechanical failure dataset is available, comprising 30+ categories including bearings, gears, pumps, and others.(30余个开源故障…☆5Updated 3 months ago
- zggg1p / A-Domain-Adaption-Transfer-Learning-Bearing-Fault-Diagnosis-Model-Based-on-Wide-Convolution-Deep-NeuInspired by the idea of transfer learning, a combined approach is proposed. In the method, Deep Convolutional Neural Networks with Wide …☆114Updated 3 weeks ago
- ☆80Updated 2 years ago
- ☆87Updated 6 months ago
- This is a benckmark for domain generalization-based fault diagnosis (基于领域泛化的相关代码)☆79Updated 3 months ago
- An Adaptive Multi-Channel Attention Method for Fault Diagnosis☆18Updated last year
- Implementation of categorical generative adversarial networks for unsupervised bearing fault diagnostics☆55Updated 2 years ago
- A Rolling Bearing Fault Diagnosis Method Using Multi-Sensor Data and Periodic Sampling (pytorch)☆37Updated 2 years ago
- ☆92Updated last year