TxgStars / wdcnnLinks
实现的是WDCNN的pytorch版本代码,对应论文的第三章 data包含了四个数据文件夹,这里只使用了0HP文件夹中的数据,里面包含了正常、内圈、外圈、滚动体共10种状态 preprocess.py的功能是对数据进行采样、编码,虽然划分出来了验证集但是并没有使用 train.py定义了用于模型训练以及显示的函数和类 main.py定义了网络模型,调用另外两个py文件获取数据和进行训练 直接运行main.py文件即可得到的结果
☆23Updated 2 years ago
Alternatives and similar repositories for wdcnn
Users that are interested in wdcnn are comparing it to the libraries listed below
Sorting:
- The intelligent fault diagnosis of HNU IDG☆107Updated 2 years ago
- A transfer learning fault diagnosis repository covering popular algorithms☆275Updated last year
- ☆62Updated last year
- Deep discriminative transfer learning network for cross-machine fault diagnosis☆107Updated 8 months ago
- zggg1p / A-Domain-Adaption-Transfer-Learning-Bearing-Fault-Diagnosis-Model-Based-on-Wide-Convolution-Deep-NeuInspired by the idea of transfer learning, a combined approach is proposed. In the method, Deep Convolutional Neural Networks with Wide …☆131Updated 6 months ago
- Transfer learning☆53Updated 4 years ago
- The intelligent fault diagnosis methods of HNU IDG☆69Updated 2 years ago
- 基于小波时频图与 Swin Transformer 的轴承故障诊断方法☆42Updated 2 years ago
- 这是一个首层卷积为宽卷积的深度神经网络Deep Convolutional Neural Networks with Wide First-layer Kernels (WDCNN)的实现,该模型具有优越的抗噪能力,可用于轴承的智能故障诊断。☆48Updated 2 years ago
- An open-source mechanical failure dataset is available, comprising 30+ categories including bearings, gears, pumps, and others.(30余个开源故障…☆34Updated 2 months ago
- This code is about the implementation of Domain Adversarial Graph Convolutional Network for Fault Diagnosis Under Variable Working Condit…☆164Updated 4 years ago
- ☆45Updated 3 years ago
- 基于注意力机制的少量样本故障诊断 pytorch☆241Updated 2 months ago
- ☆99Updated 2 years ago
- This is a reposotory that includes paper、code and datasets about domain generalization-based fault diagnosis and prognosis. (基于领域泛化的故障诊断和…☆319Updated 2 months ago
- A few shot learning repository for bearing fault diagnosis.☆96Updated 2 years ago
- ☆102Updated last year
- ☆86Updated 3 years ago
- this is the open code of paper entitled "TFN: An Interpretable Neural Network With Time Frequency Transform Embedded for Intelligent Faul…☆134Updated 5 months ago
- An official code for paper: TFPred: Learning discriminative representations from unlabeled data for few-label rotating machinery fault di…☆63Updated last year
- 基于Laplace小波卷积和BiGRU的少量样本故障诊断方法 (Small sample fault diagnosis based on Laplace wavelet convolution and BiGRU)☆57Updated 2 months ago
- ☆15Updated last week
- This is a dataset of inter-shaft bearing based on the vibration signal of rotors and casings, which comes from a aero-engine test with in…☆87Updated last year
- Bearing Fault Diagnosis By CNN、LSTM+CNN、GRU+CNN、SelfAttention+CNN☆33Updated 9 months ago
- The source codes of Meta-learning for few-shot cross-domain fault diagnosis.☆163Updated 6 months ago
- Unsupervised Deep Transfer Learning for Intelligent Fault Diagnosis: An Open Source and Comparative Study (multi_domain))☆55Updated 3 years ago
- 一种轻量化故障诊断框架——LiConvFormer☆110Updated 8 months ago
- 基于机器学习的机械故障诊断☆18Updated last year
- Using transformer to realize Bearing Fault Diagnosis☆66Updated 2 years ago
- 基于迁移学习DANN模型,对不同工况轴承进行故障诊断☆45Updated 4 years ago