xyxdegithub / cwt_swinTransformer
基于小波时频图与 Swin Transformer 的轴承故障诊断方法
☆31Updated last year
Related projects ⓘ
Alternatives and complementary repositories for cwt_swinTransformer
- Physics-informed Interpretable Wavelet Weight Initialization and Balanced Dynamic Adaptive Threshold for Intelligent Fault Diagnosis of R…☆64Updated 6 months ago
- ☆48Updated 10 months ago
- A few shot learning repository for bearing fault diagnosis.☆63Updated last year
- Transfer learning☆47Updated 3 years ago
- The intelligent fault diagnosis of HNU IDG☆77Updated 2 years ago
- A Rolling Bearing Fault Diagnosis Method Using Multi-Sensor Data and Periodic Sampling (pytorch)☆32Updated 2 years ago
- Using transformer to realize Bearing Fault Diagnosis☆52Updated last year
- ☆45Updated 2 years ago
- An Adaptive Multi-Channel Attention Method for Fault Diagnosis☆16Updated 10 months ago
- 基于Laplace小波卷积和BiGRU的少量样本故障诊断方法 (Small sample fault diagnosis based on Laplace wavelet convolution and BiGRU)☆47Updated last year
- Deep discriminative transfer learning network for cross-machine fault diagnosis☆91Updated 6 months ago
- 一种轻量化故障诊断框架——LiConvFormer☆66Updated last year
- ☆91Updated last year
- The intelligent fault diagnosis methods of HNU IDG☆62Updated 2 years ago
- 基于机器学习的机械故障诊断☆13Updated 8 months ago
- 这是一个首层卷积为宽卷积的深度神经网络Deep Convolutional Neural Networks with Wide First-layer Kernels (WDCNN)的实现,该模型具有优越的抗噪能力,可用于轴承的智能故障诊断。☆36Updated last year
- ☆68Updated 2 years ago
- ☆28Updated last year
- GTFE-Net: A Gramian Time Frequency Enhancement CNN for bearing fault diagnosis☆30Updated last year
- 基于迁移学习DANN模型,对不同工况轴承进行故障诊断☆34Updated 3 years ago
- Unsupervised Deep Transfer Learning for Intelligent Fault Diagnosis: An Open Source and Comparative Study (multi_domain))☆48Updated 3 years ago
- 实现的是WDCNN的pytorch版本代码,对应论文的第三章 data包含了四个数据文件夹,这里只 使用了0HP文件夹中的数据,里面包含了正常、内圈、外圈、滚动体共10种状态 preprocess.py的功能是对数据进行采样、编码,虽然划分出来了验证集但是并没有使用 trai…☆22Updated last year
- 轴承故障诊断☆61Updated 2 years ago
- 基于深度学习的机械故障诊断☆25Updated 8 months ago
- zggg1p / A-Domain-Adaption-Transfer-Learning-Bearing-Fault-Diagnosis-Model-Based-on-Wide-Convolution-Deep-NeuInspired by the idea of transfer learning, a combined approach is proposed. In the method, Deep Convolutional Neural Networks with Wide …☆108Updated 5 months ago
- The PyTorch version for Semi-supervised meta-learning networks with squeeze-and-excitation attention for few-shot fault diagnosis.☆53Updated 2 years ago
- This is official code for paper "Few-Shot Bearing Fault Diagnosis via Ensembling Transformer-based Model with Mahalanobis Distance Metric…☆58Updated this week
- PyTorch Implementation of "Understanding and Learning Discriminant Features based on Multiattention 1DCNN for Wheelset Bearing Fault Diag…☆26Updated last year
- Class-imbalanced Multi-source Information Fusion Transformer-based Neural Networks for Mechanical Fault Diagnosis with Limited Data☆40Updated 7 months ago
- Code sharing of fault diagnosis papers.☆44Updated 10 months ago