tyistyler / Bert-Bi-LSTM-CRF
使用fastNLP架构简单利用Bert-Bi-LSTM-CRF实现中文NER
☆15Updated 4 years ago
Alternatives and similar repositories for Bert-Bi-LSTM-CRF:
Users that are interested in Bert-Bi-LSTM-CRF are comparing it to the libraries listed below
- 实现了一下multi-head-selection联合关系实体抽取☆30Updated 5 years ago
- 2020语言与智能技术竞赛:事件抽取任务 -- 联合抽取baseline☆54Updated 4 years ago
- CCKS2020面向金融领域的小样本跨类迁移事件抽取baseline☆55Updated 2 years ago
- lic2020关系抽取比赛,使用Pytorch实现苏神的模型。☆102Updated 4 years ago
- 2019百度语言与智能技术竞赛信息抽取赛代5名代码☆69Updated 5 years ago
- ☆29Updated 5 years ago
- CCKS 2020:面向金融领域的小样本跨类迁移事件抽取。该项目实现基于MRC的事件抽取方法☆39Updated 2 years ago
- Keras solution of simple Knowledge-Based QA task with Pretrained Language Model: supporting BERT/RoBERTa/ALBERT☆20Updated last year
- 使用ACE2005创建以事件和实体为节点的事件知识图谱,用于智能问答☆16Updated 4 years ago
- 达观算法比赛ner任务,从重新训练bert,到finetune预测。☆75Updated 2 years ago
- CCKS 2020: 面向中文短文本的实体链指任务☆40Updated 3 years ago
- 基于ELMo, tensorflow的中文命名实体标注 Chinese Named Entity Recognition Based on ELMo☆21Updated 5 years ago
- The source code of 《 FGN:Fusion Glyph Network for Chinese Named Entity Recognition 》. SOTA Chinese NER method fusing both glyph represne…☆50Updated 4 years ago
- Code for NAACL2019 paper "An Encoding Strategy Based Word-Character LSTM for Chinese NER".☆65Updated 5 years ago
- 百度2020语言与智能技术竞赛:事件抽取赛道方案代码☆53Updated 4 years ago
- 2020语言与智能技术竞赛:关系抽取任务☆65Updated 4 years ago
- 天池中药说明书实体识别挑战冠军方案;中文命名实体识别;NER; BERT-CRF & BERT-SPAN & BERT-MRC;Pytorch☆23Updated 4 years ago
- ☆17Updated 6 years ago
- BDCI2019-互联网金融新实体发现-第7名(本可top3)☆18Updated 5 years ago
- 本项目是NLP领域一些任务的基准模型实现,包括文本分类、命名实体识别、实体关系抽取、NL2SQL、CKBQA以及BERT的各种下游任务应用。☆47Updated 3 years ago
- 端到端的基于知识图谱的问答系统,分为实体识别和关系分类两部,在BERT基础上做多任务联合训练。☆30Updated 5 years ago
- Tensorflow solution of NER task Using BiLSTM-CRF model with CMU/Google XLNet☆45Updated 5 years ago
- 2020语言与智能技术竞赛:事件抽取任务☆27Updated 4 years ago
- 2020语言与智能技术竞赛:关系抽取任务(https://aistudio.baidu.com/aistudio/competition/detail/31?lang=zh_CN)☆24Updated 4 years ago
- multi-label,classifier,text classification,多标签文本分类,文本分类,BERT,ALBERT,multi-label-classification