muyangquan / ictclas
ictclas的开源代码
☆18Updated 9 years ago
Alternatives and similar repositories for ictclas:
Users that are interested in ictclas are comparing it to the libraries listed below
- syntaxNet for Chinese. 利用SyntaxNet,做中文语义分析☆44Updated 4 years ago
- mmseg 分词算法c++实现☆33Updated 9 years ago
- 最大熵-IIS(Improved Iterative Scaling)训练算法的Java实现☆18Updated 9 years ago
- google 官方word2vec 中文注释版☆105Updated 10 years ago
- Tree-split 搬新家..给各位带来的不便深表歉意☆56Updated 8 years ago
- 把李航老师《统计学习方法》的后几章的算法都用java实现了一遍,实现盒子与球的EM算法,扩展到去GMM训练,后来实现了HMM分词(实现了HMM分词的参数训练)和CRF分词(借用CRF++训练的参数模型),最后利用tensorFlow把BiLSTM+CRF实现了,然后为luc…☆24Updated 2 years ago
- auto generate chinese words in huge text.☆91Updated 10 years ago
- 对中文分词jieba (python版)的注解☆92Updated 6 years ago
- ☆21Updated 10 years ago
- word2vec源码阅读,标记了中文注释☆61Updated 8 years ago
- 智能客服☆104Updated 5 years ago
- crf-seg:用于生产环境的中文分词处理工具,可自定义语料、可自定义模型、架构清晰,分词效果好。java编写。☆14Updated 3 years ago
- 对机器学习、概率图模型、主题模型领域一些模型进行实现,主要涉及一些近年高水平会议论文中提到的算法。☆18Updated 7 years ago
- Some solutions about kaggle compettions.☆16Updated 6 years ago
- 基于标题分类的主题句提取方法可描述为: 给定一篇新闻报道, 计算标题与新闻主题词集的相似度, 判断标题是否具有提示性。对于提示性标题,抽取新闻报道中与其最相似的句子作为主题句; 否则, 综合利用多种特征计算新闻报道中句子的重要性, 将得分最高的句子作为主题句。☆40Updated 8 years ago
- 用户评论标签挖掘☆71Updated 7 years ago
- 这是Word2vec和Doc2vec的一个应用示例:用Word2vec计算词的相似度和用doc2vec计算句子的相似度。☆26Updated 7 years ago
- NLP Education Tools by YuZhen(www.yuzhenkeji.com)☆50Updated 10 years ago
- 基于语义理解、知识图谱的聊天机器人☆28Updated 5 years ago
- FastText 中文文档☆61Updated 4 years ago
- ☆64Updated 4 months ago
- ZhidaoChatbot, a chatbot that can be an expert on the common questions like why,how,when,who,what based on the online question-answer web…☆42Updated 5 years ago
- ☆20Updated 8 years ago
- 中文命名实体识别(公司名称),Tensorflow 1.3 + Python3☆38Updated 7 years ago
- 自然语言处理实验☆12Updated 10 years ago
- 中文对话资料,分别下载☆20Updated 6 years ago
- DeepDive Tutorial with Chinese Support☆34Updated 3 years ago
- 这是一个最大熵的简明Java实现,提供提供训练与预测接口。训练算法采用GIS训练算法,附带示例训练集和一个天气预测的Demo。☆46Updated 10 years ago
- nlp包括对话的数据集收集整理☆14Updated 4 years ago
- Question and Answering Model with TensorFlow☆32Updated 2 years ago