mosu027 / TextClassificationLinks
TextClassification with tfidf、word2vec、tex_cnn、basiclstm, dcnn,char_cnn.....
☆18Updated 7 years ago
Alternatives and similar repositories for TextClassification
Users that are interested in TextClassification are comparing it to the libraries listed below
Sorting:
- AI-Challenger Baseline 细粒度用户评论情感分析☆230Updated 6 years ago
- 基于siamese-lstm的中文句子相似度计算☆130Updated 7 years ago
- BDCI2017-让AI当法官,决赛第四(4/415)https://www.datafountain.cn/competitions/277/details☆121Updated 7 years ago
- CNN, LSTM, NBOW, fasttext 中文文本分类☆122Updated 5 years ago
- ☆40Updated 8 years ago
- all kinds of text classificaiton models and more with deep learning☆99Updated 7 years ago
- 关于文本分类的许多方法,主要涉及到TextCNN,TextRNN, LEAM, Transformer,Attention, fasttext, HAN等☆76Updated 6 years ago
- 嵌入Word2vec词向量的RNN+ATTENTION中文文本分类☆152Updated 5 years ago
- 基于bert的ner,使用bilstm+crf☆32Updated 4 years ago
- 细粒度情感分析repository2:细粒度情感分析接口,aspect-based sentiment analysis based on HMM.☆45Updated 9 years ago
- AI Challenger 2018 细粒度用户评论情感分析,排名17th,基于Aspect Level 思路的解决方案☆329Updated 6 years ago
- AI Challenger 2018 Sentiment Analysis Baseline with fastText☆152Updated 6 years ago
- Tensorflow+bilstm+attention+multi label text classify☆121Updated 7 years ago
- 使用深度学习方法对IMDB电影评价做情感分析,使用的方法分别为:MLP、BiRNN、BiGRU+Attention Model☆226Updated 8 years ago
- 使用word2vec进行中文词向量的 训练☆91Updated 7 years ago
- Yelp Data Challenge 2013☆29Updated 11 years ago
- 基于条件随机场的医疗电子病例的命名实体识别☆114Updated 7 years ago
- ☆122Updated 8 years ago
- SVM, FastText, TextCNN, BiGRU, CNN-BiGRU在短分本分类上的对比☆86Updated 6 years ago
- 微信广告正负样本短文本分类 word2vec+CNN实现☆26Updated 7 years ago
- 细粒度用户评论情感分析☆123Updated 6 years ago
- 评论上的情感分析:主题与情感词抽取☆81Updated 5 years ago
- AI100文本分类竞赛代码。从传统机器学习到深度学习方法的测试☆254Updated 8 years ago
- A LSTM+CRF model for the seq2seq task for Medical named entity recognition in ccks2017☆80Updated 8 years ago
- 使用分层注意力机制 HAN + 多任务学习 解决 AI Challenger 细粒度用户评论情感分析 。https://challenger.ai/competition/fsauor2018☆58Updated 6 years ago
- 基于gensim模块计算句子相似度☆123Updated 9 years ago
- CSDN博客的关键词提取算法,融合TF,IDF,词性,位置等多特征。该项目用于参加2017 SMP用户画像测评,排名第四,在验证集中精度为59.9%,在最终集中精度为58.7%。启发式的方法,通用性强。☆30Updated 7 years ago
- pytorch learning eamples☆25Updated 7 years ago
- CCF-BDCI 2018年汽车行业用户观点主题及情感识别挑战赛 第6名解决方案☆143Updated 6 years ago
- 使用gensim训练word2vec模型并对训练得到词向量聚类☆16Updated 7 years ago