jiangyiqiao / word2vec-CNN_shortAdLinks
微信广告正负样本短文本分类 word2vec+CNN实现
☆26Updated 7 years ago
Alternatives and similar repositories for word2vec-CNN_shortAd
Users that are interested in word2vec-CNN_shortAd are comparing it to the libraries listed below
Sorting:
- AI Challenger 2018 Sentiment Analysis Baseline with fastText☆151Updated 6 years ago
- 基于句法分析的命名实体关系抽取程序☆65Updated 9 years ago
- Bert中文文本分类☆40Updated 6 years ago
- 使用HMM模型实现的机构名实体识别☆47Updated 7 years ago
- 基于siamese-lstm的中文句子相似度计算☆129Updated 7 years ago
- 关键词抽取,神策杯2018高校算法大师赛比赛,solo 排名3/591☆65Updated 6 years ago
- siamese dssm sentence_similarity sentece_similarity_rank tensorflow☆60Updated 6 years ago
- 基于条件随机场的医疗电子病例的命名实体识别☆113Updated 7 years ago
- 蚂蚁金服比赛 15th/2632☆47Updated 6 years ago
- 关于文本分类的许多方法,主要涉及到TextCNN,TextRNN, LEAM, Transformer,Attention, fasttext, HAN等☆75Updated 6 years ago
- Tensorflow+bilstm+attention+multi label text classify☆121Updated 7 years ago
- 第三届魔镜杯 智能客服问题相似性算法设计 第12名解决方案☆148Updated 6 years ago
- 2018atec蚂蚁金服NLP智能客服比赛 16th/2632☆109Updated 6 years ago
- Bert-classification and bert-dssm implementation with keras.☆93Updated 5 years ago
- 汽车行业用户观点主题及情感识别☆31Updated 6 years ago
- ☆44Updated 6 years ago
- 2019达观杯 第六名代码☆43Updated 2 years ago
- use ELMo in chinese environment☆104Updated 6 years ago
- Our experience & lesson & code☆48Updated 8 years ago
- NLP Keras BiLSTM+CRF☆52Updated 7 years ago
- SVM, FastText, TextCNN, BiGRU, CNN-BiGRU在短分本分类上的对比☆84Updated 6 years ago
- AI-Challenger Baseline 细粒度用户评论情感分析☆229Updated 6 years ago
- 基于bert的ner,使用bilstm+crf☆32Updated 4 years ago
- CCL2018客服领域用户意图分类冠军1st方案☆148Updated 2 years ago
- 2018达观杯文本智能处理比赛,文本分类主题,最终排名 8/3462☆63Updated 6 years ago
- 汽车主题情感分析大赛冠军☆27Updated 6 years ago
- BDCI2017-让AI当法官,决赛第四(4/415)https://www.datafountain.cn/competitions/277/details☆120Updated 7 years ago
- 【梳理】FDDC2018金融算法挑战赛02-A股上市公司公告信息抽取☆93Updated 6 years ago
- CSDN博客的关键词提取算法,融合TF,IDF,词性,位置等多特征。该项目用于参加2017 SMP用户画像测评,排名第四,在验证集中精度为59.9%,在最终集中精度为58.7%。启发式的方法,通用性强。☆30Updated 7 years ago
- A Chinese word segment model based on BERT, F1-Score 97%☆93Updated 6 years ago