mgyokim / Semiconductor-Wafer-Map-Defective-Type-Classification-ModelLinks
Increased yield of semiconductor wafer maps through classification of defective types of semiconductor wafer maps
☆10Updated 4 years ago
Alternatives and similar repositories for Semiconductor-Wafer-Map-Defective-Type-Classification-Model
Users that are interested in Semiconductor-Wafer-Map-Defective-Type-Classification-Model are comparing it to the libraries listed below
Sorting:
- 模型优化调参---网格搜索(五折交叉验证)☆12Updated 6 years ago
- Statistical learning methods, 统计学习方法 [李航] 值得反复读. [笔记, 代码, notebook, 参考文献, Errata, lihang]☆16Updated 6 years ago
- Analyzed real-world foundry data and built a classifier to detect semiconductor wafer defects during the manufacturing process.☆20Updated 7 years ago
- 机器学习预测模型,分别用逻辑回归,决策树,随机森林,神经网络,XGBOOST和支持向量机算法建模,交叉验证,并选出AUC最优的模型。特征工程优化后,AUC值达到0.8259☆57Updated 5 years ago
- Python数据科学系专栏(pandas、Numpy、SKlearn、Matplotlib)、实战项目(代码、讲解、数据集)☆221Updated 2 years ago
- 包括决策树和随机森林进行离职人员预测,Xgboost和lightGBM的应用☆287Updated 5 years ago
- 集成学习Stacking方法详解☆78Updated 6 years ago
- LessonPythonCode☆185Updated 2 years ago
- semiconductor wafer pattern map classified from web data sets WM-811K☆39Updated 2 years ago
- 数据特征工程、各种机器学习回归模型、回归数据预处理☆44Updated 5 years ago
- 《应用时间序列分析》易丹辉、王燕著; 案例Python实现☆17Updated 6 years ago
- ☆112Updated 11 months ago
- 2019科大讯飞工程机械赛题-亚军☆39Updated 6 years ago
- Sklearn机器学习中的主要算法原理以及实现(线性回归、逻辑回归、朴素贝叶斯、K-Means聚类、KNN、PCA主成分分析、BP神经网络)☆83Updated 5 years ago
- Example of NIR spectrogram processing for regression using Python☆24Updated 7 years ago
- 2017工业大数据创新竞赛/风机叶片结冰预测大赛☆48Updated 7 years ago
- ☆180Updated last year
- 机器学习、深度学习原理及实践☆20Updated 3 years ago
- A practical feature engineering handbook☆333Updated 5 years ago
- 慕课网上深度学习之神经网络(CNN RNN GAN)算法原理+实战练习的代码和部分数据☆42Updated 6 years ago
- 1、BP-momentum神经网络numpy实现及Pytorch实现及各optim在AQI数据集的表现。2、BP网络分类☆40Updated 5 years ago
- 深度学习代码☆132Updated 6 years ago
- 智能风控 python金融风险管理与评分卡建模 数据和代码☆23Updated 4 years ago
- 数据挖掘库sklearn的使用教程和demo☆85Updated 7 years ago
- ☆22Updated 5 years ago
- 《Python统计与数据分析实战》课程代码,包含了大部分统计与非参数统计和数据分析的模型、算法。回归分析、方差分析、点估计、假设检验、主成分分析、因子分析、聚类分析、判别分析、对数线性模型、分位回归模型以及列联表分析、非参数平滑、非参数密度估计等各种非参数统计方法。☆369Updated 8 months ago
- 《Python预测之美:数据分析与算法实战》书籍代码维护☆66Updated 2 years ago
- 机器学习集成模型之Stacking各类模型及工具源码☆118Updated 5 years ago
- LSTM + Wavelet(长短期记忆神经网络+小波分析):深度学习与数字信号处理的结合☆186Updated 6 years ago
- 机器学习算法超参数的优化方法——基于hyperopt和bayes_opt☆14Updated 7 years ago