mgyokim / Semiconductor-Wafer-Map-Defective-Type-Classification-Model
Increased yield of semiconductor wafer maps through classification of defective types of semiconductor wafer maps
☆9Updated 3 years ago
Alternatives and similar repositories for Semiconductor-Wafer-Map-Defective-Type-Classification-Model:
Users that are interested in Semiconductor-Wafer-Map-Defective-Type-Classification-Model are comparing it to the libraries listed below
- Analyzed real-world foundry data and built a classifier to detect semiconductor wafer defects during the manufacturing process.☆18Updated 6 years ago
- Introduction Support Vector Regression using the Boston Housing data set☆37Updated 3 years ago
- ☆81Updated last week
- 模型优化调参---网格搜索(五折交叉验证)☆11Updated 5 years ago
- Inspection equipment for the semiconductor industry saves companies millions of dollars. This project uses the MIR-WM811K Corpus» of wafe…☆26Updated 3 years ago
- Lithography defect prediction for microchip manufacturing optimization with machine learning model☆17Updated last year
- Statistical learning methods, 统计学习方法 [李航] 值得反复读. [笔记, 代码, notebook, 参考文献, Errata, lihang]☆15Updated 5 years ago
- a novel calibration model named SpectraTr, based on the transformer structure is proposed and used for the qualitative analysis of drug s…☆19Updated 2 years ago
- ☆20Updated 4 years ago
- Qualitative analysis of near infrared spectroscopy based some simple 1-d cnn networks☆33Updated 2 years ago
- 数据特征工程、各种机器学习回归模型、回归数据预处理☆39Updated 5 years ago
- 2017工业大数据创新竞赛/风机叶片结冰预测大赛☆48Updated 6 years ago
- 轴承故障检测 训练赛第30名代码☆122Updated 5 years ago
- 机器学习算法超参数的优化方法——基于hyperopt和bayes_opt☆15Updated 6 years ago
- This is a case of bearing fault intelligent diagnosis. The program is written in MATLAB. The main techniques used are feature detection a…☆50Updated 3 years ago
- 时间序列分析的代码及简要说明☆17Updated 6 years ago
- 《应用时间序列分析》易丹辉、王燕著; 案例Python实现☆15Updated 5 years ago
- 基于一维卷积神经网络(1D-CNN)的多元时间序列分类☆73Updated 4 years ago
- ☆17Updated 5 years ago
- Pattern classification on wafer maps☆15Updated 4 years ago
- 机器学习预测模型,分别用逻辑回归,决策树,随机森林,神经网络,XGBOOST和支持向量机算法建模,交叉验证,并选出AUC最优的模型。特征工程优化后,AUC值达到0.8259☆54Updated 4 years ago
- 使用支持向量机、弹性网络、随机森林、LSTM、SARIMA等多种算法进行时间序列的回归预测,除此以外还采取了多种组合方法对以上算法输出的结果进行组合预测。Support vector machine, elastic network, random forest, LSTM…☆43Updated 4 years ago
- [智能优化算法及其MATLAB实例(第2版)]书籍配套源码☆36Updated 3 years ago
- ☆18Updated 4 years ago
- ☆135Updated 6 months ago
- Near-infrared spectroscopy model transfer based on convolutional neural network and transfer learning☆18Updated last year
- Comparing XGBoost, CatBoost and LightGBM on TimeSeries Regression (RMSE, R2, AIC) on two different TimeSeries datasets.☆22Updated 5 years ago
- ☆79Updated 2 years ago
- 使用改良的Transformer模型应用于多维时间序列的分类任务上☆21Updated 3 years ago
- Dataset that was used during the PHM IEEE 2012 Data Challenge, built by the FEMTO-ST Institute☆131Updated 6 years ago