keith2018 / TinyTorch
A tiny deep learning training framework implemented from scratch in C++ that follows PyTorch's API.
☆47Updated this week
Alternatives and similar repositories for TinyTorch:
Users that are interested in TinyTorch are comparing it to the libraries listed below
- 分层解耦的深度学习推理引擎☆72Updated last month
- Triton Documentation in Chinese Simplified / Triton 中文文档☆62Updated 2 months ago
- Code release for book "Efficient Training in PyTorch"☆53Updated 5 months ago
- A light llama-like llm inference framework based on the triton kernel.☆103Updated 3 weeks ago
- Tiny C++11 GPT-2 inference implementation from scratch☆57Updated 3 months ago
- Implement Flash Attention using Cute.☆74Updated 3 months ago
- 📚FFPA(Split-D): Yet another Faster Flash Prefill Attention with O(1) GPU SRAM complexity for headdim > 256, ~2x↑🎉vs SDPA EA.☆157Updated last week
- A tutorial for CUDA&PyTorch☆131Updated 2 months ago
- Codes & examples for "CUDA - From Correctness to Performance"☆89Updated 5 months ago
- b站上的课程☆72Updated last year
- 大规模并行处理器编程实战 第二版答案☆31Updated 2 years ago
- ☆70Updated 2 years ago
- 《CUDA编程基础与实践》一书的代码☆114Updated 2 years ago
- CUDA 算子手撕与面试指南☆276Updated 2 months ago
- 使用 CUDA C++ 实现的 llama 模型推理框架☆48Updated 4 months ago
- Machine Learning Compiler Road Map☆43Updated last year
- ☆257Updated 5 months ago
- ☆114Updated last year
- 这个项目介绍了简单的CUDA入门,涉及到CUDA执行模型、线程层次、CUDA内存模型、核函数的编写方式以及PyTorch使用CUDA扩展的两种方式。通过该项目可以基本入门基于PyTorch的CUDA扩展的开发方式。☆84Updated 3 years ago
- A PyTorch-like deep learning framework. Just for fun.☆148Updated last year
- 鉴定网络热门并行编程框架 - 性能测评(附小彭老师锐评) 已评测:Taichi、SyCL、C++、OpenMP、TBB、Mojo☆36Updated last year
- CUDA 6大并行计算模式 代码与笔记☆60Updated 4 years ago
- GPU高性能编程CUDA实战随书代码☆34Updated 2 years ago
- x86-64 SIMD矢量优化系列教程☆118Updated this week
- Examples and exercises from the book Programming Massively Parallel Processors - A Hands-on Approach. David B. Kirk and Wen-mei W. Hwu (T…☆66Updated 4 years ago
- Implement custom operators in PyTorch with cuda/c++☆56Updated 2 years ago
- Tutorials for writing high-performance GPU operators in AI frameworks.☆130Updated last year
- ⚡️Write HGEMM from scratch using Tensor Cores with WMMA, MMA and CuTe API, Achieve Peak⚡️ Performance.☆63Updated last week
- CUDA C 编程权威指南代码实现 包含了 书上第二章到第八章的大部分代码实现和作者笔记,全由作者本人手动实现,难免有错误的地方,请大家谨慎参考,非常欢迎对错误的指正。 如果有帮助的话请Star一下,对作者帮助很大,谢谢!☆325Updated 2 years ago
- Decoding Attention is specially optimized for MHA, MQA, GQA and MLA using CUDA core for the decoding stage of LLM inference.☆35Updated 3 weeks ago