liwei-cpp / MetaNNLinks
☆280Updated 4 years ago
Alternatives and similar repositories for MetaNN
Users that are interested in MetaNN are comparing it to the libraries listed below
Sorting:
- 《C++模板元编程实战:一个深度学习框架的初步实现》☆185Updated 6 years ago
- This is an implementation of sgemm_kernel on L1d cache.☆229Updated last year
- row-major matmul optimization☆649Updated last year
- 个人翻译《Data Parallel C++》☆75Updated 4 years ago
- pybind11中文文档(个人翻译)☆273Updated 2 years ago
- x86-64 SIMD矢量优化系列教程☆125Updated this week
- pdf☆91Updated 7 years ago
- 《C++ Templates The Complete Guide - second edition》的非专业个人翻译☆298Updated 2 years ago
- A simple deep learning framework that supports automatic differentiation and GPU acceleration.☆58Updated 2 years ago
- Chinese version for Agner Fog's optimizing series☆81Updated 6 years ago
- a c++/cuda template library for tensor lazy evaluation☆162Updated 2 years ago
- ☆113Updated last year
- Xiao's CUDA Optimization Guide [NO LONGER ADDING NEW CONTENT]☆309Updated 2 years ago
- ☆20Updated 3 years ago
- CUDA C 编程权威指南代码实现 包含了书上第二章到第八章的大部分代码实现和作者笔记,全由作者本人手动实现,难免有错误的地方,请大家谨慎参考,非常欢迎对错误的指正。 如果有帮助的话请Star一下,对作者帮助很大,谢谢!☆350Updated 2 years ago
- ☆452Updated 10 years ago
- b站上的课程☆75Updated last year
- mperf是一个面向移动/嵌入式平台的算子性能调优工具箱☆188Updated last year
- 作为对《Concurrency with Modern C++》的中文翻译。☆247Updated 4 years ago
- BLISlab: A Sandbox for Optimizing GEMM☆533Updated 4 years ago
- 作为对《Heterogeneous Computing with OpenCL 2.0》英文版的中文翻译。☆140Updated 4 years ago
- A simple high performance CUDA GEMM implementation.☆392Updated last year
- Google Colab Notebooks for Udacity CS344 - Intro to Parallel Programming☆135Updated 4 years ago
- ☆110Updated last year
- MegCC是一个运行时超轻量,高效, 移植简单的深度学习模型编译器☆486Updated 9 months ago
- 大规模并行处理器编程实战 第二版答案☆33Updated 3 years ago
- 23 GoF Patterns: RAII-Centric C++ Implementation -> Explicit Ownership via unique_ptr/shared_ptr/weak_ptr☆325Updated 7 months ago
- 《CUDA编程基础与实践》一书的代码☆127Updated 3 years ago
- how to learn PyTorch and OneFlow☆445Updated last year
- tensorflow源码阅读笔记☆193Updated 6 years ago