openmlsys / openmlsys-cudaLinks
Tutorials for writing high-performance GPU operators in AI frameworks.
☆133Updated 2 years ago
Alternatives and similar repositories for openmlsys-cuda
Users that are interested in openmlsys-cuda are comparing it to the libraries listed below
Sorting:
- ☆144Updated last year
- 🤖FFPA: Extend FlashAttention-2 with Split-D, ~O(1) SRAM complexity for large headdim, 1.8x~3x↑🎉 vs SDPA EA.☆233Updated 2 weeks ago
- ⚡️Write HGEMM from scratch using Tensor Cores with WMMA, MMA and CuTe API, Achieve Peak⚡️ Performance.☆134Updated 6 months ago
- Performance of the C++ interface of flash attention and flash attention v2 in large language model (LLM) inference scenarios.☆43Updated 9 months ago
- 分层解耦的深度学习推理引擎☆76Updated 9 months ago
- A tutorial for CUDA&PyTorch☆170Updated 10 months ago
- Code base and slides for ECE408:Applied Parallel Programming On GPU.☆139Updated 4 years ago
- ☆152Updated 10 months ago
- 使用 CUDA C++ 实现的 llama 模型推理框架☆62Updated last year
- ☆140Updated last year
- ☆113Updated 8 months ago
- 使用 cutlass 实现 flash-attention 精简版,具有教学意义☆51Updated last year
- We invite you to visit and follow our new repository at https://github.com/microsoft/TileFusion. TiledCUDA is a highly efficient kernel …☆190Updated 10 months ago
- ☆176Updated 2 years ago
- ☆116Updated last year
- Standalone Flash Attention v2 kernel without libtorch dependency☆112Updated last year
- llm theoretical performance analysis tools and support params, flops, memory and latency analysis.☆113Updated 4 months ago
- ☆21Updated 4 years ago
- ☆212Updated last year
- play gemm with tvm☆92Updated 2 years ago
- 使用 cutlass 仓库在 ada 架构上实现 fp8 的 flash attention☆78Updated last year
- Implement custom operators in PyTorch with cuda/c++☆74Updated 2 years ago
- A simple high performance CUDA GEMM implementation.☆418Updated last year
- A standalone GEMM kernel for fp16 activation and quantized weight, extracted from FasterTransformer☆96Updated 2 months ago
- ☆60Updated last year
- Examples of CUDA implementations by Cutlass CuTe☆254Updated 5 months ago
- A collection of memory efficient attention operators implemented in the Triton language.☆285Updated last year
- Decoding Attention is specially optimized for MHA, MQA, GQA and MLA using CUDA core for the decoding stage of LLM inference.☆45Updated 5 months ago
- ☆130Updated 11 months ago
- ☆102Updated last year