openmlsys / openmlsys-cudaLinks
Tutorials for writing high-performance GPU operators in AI frameworks.
☆129Updated last year
Alternatives and similar repositories for openmlsys-cuda
Users that are interested in openmlsys-cuda are comparing it to the libraries listed below
Sorting:
- ☆137Updated last year
- ⚡️FFPA: Extend FlashAttention-2 with Split-D, achieve ~O(1) SRAM complexity for large headdim, 1.8x~3x↑ vs SDPA.🎉☆189Updated 2 months ago
- A tutorial for CUDA&PyTorch☆148Updated 5 months ago
- ⚡️Write HGEMM from scratch using Tensor Cores with WMMA, MMA and CuTe API, Achieve Peak⚡️ Performance.☆86Updated 2 months ago
- Performance of the C++ interface of flash attention and flash attention v2 in large language model (LLM) inference scenarios.☆39Updated 4 months ago
- ☆99Updated 3 months ago
- 使用 CUDA C++ 实现的 llama 模型推理框架☆58Updated 8 months ago
- 分层解耦的深度学习推理引擎☆73Updated 4 months ago
- ☆96Updated 10 months ago
- ☆171Updated last year
- Code base and slides for ECE408:Applied Parallel Programming On GPU.☆126Updated 4 years ago
- ☆139Updated last year
- We invite you to visit and follow our new repository at https://github.com/microsoft/TileFusion. TiledCUDA is a highly efficient kernel …☆183Updated 5 months ago
- 使用 cutlass 实现 flash-attention 精简版,具有教学意义☆43Updated 11 months ago
- ☆149Updated 6 months ago
- 使用 cutlass 仓库在 ada 架构上实现 fp8 的 flash attention☆72Updated 11 months ago
- Examples of CUDA implementations by Cutlass CuTe☆203Updated last week
- play gemm with tvm☆91Updated last year
- llm theoretical performance analysis tools and support params, flops, memory and latency analysis.☆98Updated this week
- ☆70Updated 2 years ago
- ☆206Updated 7 months ago
- ☆21Updated 4 years ago
- A light llama-like llm inference framework based on the triton kernel.☆134Updated this week
- Standalone Flash Attention v2 kernel without libtorch dependency☆110Updated 10 months ago
- A collection of memory efficient attention operators implemented in the Triton language.☆272Updated last year
- Decoding Attention is specially optimized for MHA, MQA, GQA and MLA using CUDA core for the decoding stage of LLM inference.☆38Updated last month
- ☆113Updated last year
- flash attention tutorial written in python, triton, cuda, cutlass☆380Updated 2 months ago
- A simple high performance CUDA GEMM implementation.☆384Updated last year
- A standalone GEMM kernel for fp16 activation and quantized weight, extracted from FasterTransformer☆92Updated last week