InfiniTensor / RefactorGraph
分层解耦的深度学习推理引擎
☆67Updated last month
Alternatives and similar repositories for RefactorGraph:
Users that are interested in RefactorGraph are comparing it to the libraries listed below
- 使用 CUDA C++ 实现的 llama 模型推理框架☆43Updated 2 months ago
- ☆199Updated this week
- ☆33Updated 3 months ago
- Tutorials for writing high-performance GPU operators in AI frameworks.☆126Updated last year
- ☆79Updated last year
- ⚡️Write HGEMM from scratch using Tensor Cores with WMMA, MMA and CuTe API, achieve peak⚡️ performance☆43Updated this week
- ☆70Updated last year
- play gemm with tvm☆85Updated last year
- ☆105Updated 10 months ago
- TiledCUDA is a highly efficient kernel template library designed to elevate CUDA C’s level of abstraction for processing tiles.☆174Updated 2 months ago
- A light llama-like llm inference framework based on the triton kernel.☆77Updated last week
- ☆26Updated 7 months ago
- CUDA 6大并行计算模式 代码与笔记☆61Updated 4 years ago
- Implement Flash Attention using Cute.☆65Updated last month
- ☆22Updated last month
- 使用 cutlass 仓库在 ada 架构上实现 fp8 的 flash attention☆52Updated 5 months ago
- ☆107Updated 9 months ago
- 解读cudnn文档,掌握其用法☆16Updated 8 months ago
- Decoding Attention is specially optimized for multi head attention (MHA) using CUDA core for the decoding stage of LLM inference.☆27Updated 2 months ago
- Standalone Flash Attention v2 kernel without libtorch dependency☆99Updated 4 months ago
- Triton Compiler related materials.☆29Updated 2 weeks ago
- 大规模并行处理器编程实战 第二版答案☆29Updated 2 years ago
- ☆57Updated last month
- A standalone GEMM kernel for fp16 activation and quantized weight, extracted from FasterTransformer☆87Updated 10 months ago
- Examples of CUDA implementations by Cutlass CuTe☆127Updated last month
- ☆141Updated last week
- Machine Learning Compiler Road Map☆42Updated last year
- Performance of the C++ interface of flash attention and flash attention v2 in large language model (LLM) inference scenarios.☆33Updated 4 months ago
- ☆19Updated 3 years ago