JieRen98 / SGEMM-SASS-AnnotationLinks
☆21Updated 4 years ago
Alternatives and similar repositories for SGEMM-SASS-Annotation
Users that are interested in SGEMM-SASS-Annotation are comparing it to the libraries listed below
Sorting:
- A standalone GEMM kernel for fp16 activation and quantized weight, extracted from FasterTransformer☆94Updated 3 weeks ago
- ☆139Updated last year
- ☆98Updated 4 years ago
- 分层解耦的深度学习推理引擎☆75Updated 7 months ago
- Performance of the C++ interface of flash attention and flash attention v2 in large language model (LLM) inference scenarios.☆40Updated 7 months ago
- A tutorial for CUDA&PyTorch☆156Updated 8 months ago
- ⚡️Write HGEMM from scratch using Tensor Cores with WMMA, MMA and CuTe API, Achieve Peak⚡️ Performance.☆119Updated 4 months ago
- play gemm with tvm☆91Updated 2 years ago
- This is a demo how to write a high performance convolution run on apple silicon☆54Updated 3 years ago
- Standalone Flash Attention v2 kernel without libtorch dependency☆110Updated last year
- 使用 cutlass 仓库在 ada 架构上实现 fp8 的 flash attention☆75Updated last year
- ☆150Updated 8 months ago
- ☆115Updated last year
- CUDA 6大并行计算模式 代码与笔记☆60Updated 5 years ago
- ☆109Updated 6 months ago
- ☆43Updated last year
- We invite you to visit and follow our new repository at https://github.com/microsoft/TileFusion. TiledCUDA is a highly efficient kernel …☆186Updated 8 months ago
- study of cutlass☆22Updated 10 months ago
- ☆59Updated 10 months ago
- Tutorials for writing high-performance GPU operators in AI frameworks.☆132Updated 2 years ago
- Several optimization methods of half-precision general matrix vector multiplication (HGEMV) using CUDA core.☆67Updated last year
- 使用 CUDA C++ 实现的 llama 模型推理框架☆62Updated 10 months ago
- An unofficial cuda assembler, for all generations of SASS, hopefully :)☆84Updated 2 years ago
- ☆37Updated 11 months ago
- 使用 cutlass 实现 flash-attention 精简版,具有教学意义☆49Updated last year
- ☆32Updated 8 months ago
- ☆106Updated 4 months ago
- ☆140Updated last year
- ☆18Updated last year
- CUDA 8-bit Tensor Core Matrix Multiplication based on m16n16k16 WMMA API☆32Updated 2 years ago