caiwanxianhust / FasterLLaMALinks
使用 CUDA C++ 实现的 llama 模型推理框架
☆61Updated 10 months ago
Alternatives and similar repositories for FasterLLaMA
Users that are interested in FasterLLaMA are comparing it to the libraries listed below
Sorting:
- A light llama-like llm inference framework based on the triton kernel.☆151Updated last month
- ☆138Updated last year
- 分层解耦的深度学习推理引擎☆75Updated 6 months ago
- Performance of the C++ interface of flash attention and flash attention v2 in large language model (LLM) inference scenarios.☆40Updated 6 months ago
- 使用 cutlass 实现 flash-attention 精简版,具有教学意义☆46Updated last year
- 使用 cutlass 仓库在 ada 架构上实现 fp8 的 flash attention☆75Updated last year
- ☆59Updated 9 months ago
- llm theoretical performance analysis tools and support params, flops, memory and latency analysis.☆106Updated 2 months ago
- ☆103Updated 3 months ago
- ☆150Updated 8 months ago
- ☆32Updated 7 months ago
- ☆13Updated 6 months ago
- ☆141Updated last year
- A tutorial for CUDA&PyTorch☆154Updated 7 months ago
- ⚡️Write HGEMM from scratch using Tensor Cores with WMMA, MMA and CuTe API, Achieve Peak⚡️ Performance.☆109Updated 4 months ago
- ☆15Updated last year
- 🤖FFPA: Extend FlashAttention-2 with Split-D, ~O(1) SRAM complexity for large headdim, 1.8x~3x↑🎉 vs SDPA EA.☆212Updated last month
- A practical way of learning Swizzle☆25Updated 7 months ago
- ☆55Updated last month
- ☆37Updated 11 months ago
- Decoding Attention is specially optimized for MHA, MQA, GQA and MLA using CUDA core for the decoding stage of LLM inference.☆42Updated 3 months ago
- Implement Flash Attention using Cute.☆95Updated 8 months ago
- Tutorials for writing high-performance GPU operators in AI frameworks.☆130Updated 2 years ago
- ☆41Updated last year
- ☆35Updated 4 months ago
- Several optimization methods of half-precision general matrix vector multiplication (HGEMV) using CUDA core.☆64Updated last year
- Examples of CUDA implementations by Cutlass CuTe☆229Updated 2 months ago
- Triton Documentation in Chinese Simplified / Triton 中文文档☆81Updated 5 months ago
- Multiple GEMM operators are constructed with cutlass to support LLM inference.☆19Updated last month
- ☆26Updated last month