caiwanxianhust / FasterLLaMA
使用 CUDA C++ 实现的 llama 模型推理框架
☆45Updated 3 months ago
Alternatives and similar repositories for FasterLLaMA:
Users that are interested in FasterLLaMA are comparing it to the libraries listed below
- Decoding Attention is specially optimized for multi head attention (MHA) using CUDA core for the decoding stage of LLM inference.☆29Updated 3 months ago
- 使用 cutlass 仓库在 ada 架构上实现 fp8 的 flash attention☆53Updated 6 months ago
- Standalone Flash Attention v2 kernel without libtorch dependency☆104Updated 5 months ago
- ☆36Updated last month
- Multiple GEMM operators are constructed with cutlass to support LLM inference.☆16Updated 4 months ago
- 分层解耦的深度学习推理引擎☆70Updated this week
- ☆26Updated 10 months ago
- ☆110Updated 11 months ago
- ⚡️Write HGEMM from scratch using Tensor Cores with WMMA, MMA and CuTe API, Achieve Peak⚡️ Performance.☆52Updated 2 weeks ago
- Performance of the C++ interface of flash attention and flash attention v2 in large language model (LLM) inference scenarios.☆35Updated 5 months ago
- Implement Flash Attention using Cute.☆69Updated 2 months ago
- A light llama-like llm inference framework based on the triton kernel.☆91Updated this week
- A standalone GEMM kernel for fp16 activation and quantized weight, extracted from FasterTransformer☆88Updated 11 months ago
- llama INT4 cuda inference with AWQ☆50Updated last month
- ☆57Updated 3 months ago
- GPTQ inference TVM kernel☆38Updated 9 months ago
- 使用 cutlass 实现 flash-attention 精简版,具有教学意义☆35Updated 6 months ago
- llm theoretical performance analysis tools and support params, flops, memory and latency analysis.☆78Updated last month
- Several optimization methods of half-precision general matrix vector multiplication (HGEMV) using CUDA core.☆55Updated 5 months ago
- TileFusion is a highly efficient kernel template library designed to elevate the level of abstraction in CUDA C for processing tiles.☆56Updated this week
- ☆19Updated 4 months ago
- ☆142Updated last month
- ☆59Updated 3 months ago
- 📚FFPA: Yet another Faster Flash Prefill Attention with O(1)⚡️SRAM complexity for headdim > 256, 1.8x~3x↑🎉faster than SDPA EA.☆106Updated this week
- ☆35Updated 4 months ago
- ☢️ TensorRT 2023复赛——基于TensorRT-LLM的Llama模型推断加速优化☆44Updated last year
- ☆81Updated 5 months ago
- Examples of CUDA implementations by Cutlass CuTe☆138Updated 2 weeks ago