caiwanxianhust / FasterLLaMALinks
使用 CUDA C++ 实现的 llama 模型推理框架
☆62Updated last year
Alternatives and similar repositories for FasterLLaMA
Users that are interested in FasterLLaMA are comparing it to the libraries listed below
Sorting:
- A light llama-like llm inference framework based on the triton kernel.☆166Updated 2 months ago
- 使用 cutlass 实现 flash-attention 精简版,具有教学意义☆51Updated last year
- 分层解耦的深度学习推理引擎☆76Updated 9 months ago
- ☆144Updated last year
- 注释的nano_vllm仓库,并且完成了MiniCPM4的适配以及注册新模型的功能☆108Updated 3 months ago
- 使用 cutlass 仓库在 ada 架构上实现 fp8 的 flash attention☆78Updated last year
- ☆14Updated last month
- Performance of the C++ interface of flash attention and flash attention v2 in large language model (LLM) inference scenarios.☆43Updated 9 months ago
- Decoding Attention is specially optimized for MHA, MQA, GQA and MLA using CUDA core for the decoding stage of LLM inference.☆45Updated 5 months ago
- llm theoretical performance analysis tools and support params, flops, memory and latency analysis.☆113Updated 4 months ago
- ☆47Updated last year
- Implement Flash Attention using Cute.☆97Updated 11 months ago
- ☆33Updated 10 months ago
- ⚡️Write HGEMM from scratch using Tensor Cores with WMMA, MMA and CuTe API, Achieve Peak⚡️ Performance.☆134Updated 6 months ago
- ☆112Updated 6 months ago
- A practical way of learning Swizzle☆33Updated 10 months ago
- ☆20Updated last year
- From Minimal GEMM to Everything☆82Updated 3 weeks ago
- 🤖FFPA: Extend FlashAttention-2 with Split-D, ~O(1) SRAM complexity for large headdim, 1.8x~3x↑🎉 vs SDPA EA.☆233Updated 2 weeks ago
- ☆152Updated 10 months ago
- Multiple GEMM operators are constructed with cutlass to support LLM inference.☆20Updated 4 months ago
- ☆59Updated 4 months ago
- ☆39Updated 6 months ago
- A tutorial for CUDA&PyTorch☆170Updated 10 months ago
- A standalone GEMM kernel for fp16 activation and quantized weight, extracted from FasterTransformer☆96Updated 2 months ago
- Triton Documentation in Chinese Simplified / Triton 中文文档☆94Updated 2 weeks ago
- FlagTree is a unified compiler supporting multiple AI chip backends for custom Deep Learning operations, which is forked from triton-lang…☆140Updated this week
- GEMV implementation with CUTLASS☆16Updated 3 months ago
- Tutorials for writing high-performance GPU operators in AI frameworks.☆133Updated 2 years ago
- Examples of CUDA implementations by Cutlass CuTe☆254Updated 5 months ago