isthegoal / kdd-cup-2019-Context-Aware-Rank_23Links
☆13Updated 5 years ago
Alternatives and similar repositories for kdd-cup-2019-Context-Aware-Rank_23
Users that are interested in kdd-cup-2019-Context-Aware-Rank_23 are comparing it to the libraries listed below
Sorting:
- Context-Aware Multi-Modal Transportation Recommendation☆38Updated 6 years ago
- Solution to KDD Cup 2019 ML competition using LightGBM and Deep FM☆13Updated 5 years ago
- Context-Aware Multi-Modal Transportation Recommendation☆12Updated 6 years ago
- Context-Aware Multi-Modal Transportation Recommendation☆16Updated 6 years ago
- KDD CUP 2019 Baseline☆102Updated 6 years ago
- PaddlePaddle baseline for KDD2019 "Context-Aware Multi-Modal Transportation Recommendation"☆52Updated 6 years ago
- 澳新银行数据竞赛(DC平台)第四名方案☆15Updated 6 years ago
- 2018-腾讯广告算法大赛-相似人群拓展(初赛):10th/1563 (Top 0.64%)☆50Updated 6 years ago
- 2018 - Kaggle - TalkingData AdTracking Fraud Detection Challenge: Silver medal (银牌)☆74Updated 6 years ago
- KDD CUP 2018☆129Updated 7 years ago
- Rank9 IJCAI-18 阿里妈妈搜索广告转化预测 第一赛季☆10Updated 7 years ago
- ☆11Updated 6 years ago
- ICME2019&字节跳动 短视频内容理解与推荐竞赛rank14方案☆56Updated 4 years ago
- 机器学习有关算法和实例☆97Updated 4 years ago
- a project about Personalization recommendation(UserCF,itemCF,LFM,Personal Rank)☆18Updated 5 years ago
- kdd2017 travel time competition rank 28/3574☆30Updated 8 years ago
- 2018 KDD Cup Top1 Solutions☆186Updated 7 years ago
- Bytedance_ICME2019_challenge_baseline☆146Updated 2 years ago
- 2018腾讯社交广告33名;☆22Updated 7 years ago
- 基于side information版的 word2vec 《Billion-scale Commodity Embedding for E-commerce Recommendation in Alibaba》☆23Updated 5 years ago
- Edge-Based Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting☆42Updated 5 years ago
- Solutions of the forecast problem using Xgboost☆92Updated 6 years ago
- Some machine learning algorithm☆70Updated 5 years ago
- dc数据竞赛 汽车出行预测☆10Updated 6 years ago
- 如期而至-用户购买时间预测☆22Updated 7 years ago
- 全球城市计算AI挑战赛☆62Updated 6 years ago
- 阿里移动推荐算法比赛☆78Updated 8 years ago
- 天池全球城市计算AI挑战赛:A榜单模型12.28, B榜单模型12.53,多模型融合11.74(Top 3), C榜官方结果17.08(新人赛验证C榜可通过乘个衰减提升很多到12.00,A榜也有效果到11.88)☆40Updated 6 years ago
- ☆52Updated 5 years ago
- 京东2019-用户对品类下店铺的购买预测(A榜单人13,B榜团队第7)☆19Updated 6 years ago