ywc1026 / KDD-CUP-2019Links
Context-Aware Multi-Modal Transportation Recommendation
☆12Updated 6 years ago
Alternatives and similar repositories for KDD-CUP-2019
Users that are interested in KDD-CUP-2019 are comparing it to the libraries listed below
Sorting:
- Solution to KDD Cup 2019 ML competition using LightGBM and Deep FM☆13Updated 5 years ago
- KDD CUP 2019 Baseline☆102Updated 6 years ago
- Context-Aware Multi-Modal Transportation Recommendation☆38Updated 6 years ago
- Context-Aware Multi-Modal Transportation Recommendation☆16Updated 6 years ago
- PaddlePaddle baseline for KDD2019 "Context-Aware Multi-Modal Transportation Recommendation"☆52Updated 6 years ago
- Rank9 IJCAI-18 阿里妈妈搜索广告转化预测 第一赛季☆10Updated 7 years ago
- IJCAI-18 阿里妈妈搜索广告转化预测初赛方案☆74Updated 7 years ago
- ☆11Updated 6 years ago
- xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems☆129Updated 6 years ago
- KDD CUP 2018☆129Updated 7 years ago
- Source code for our Paper "Self-Attentive Neural Collaborative Filtering"☆16Updated 7 years ago
- TalkingData AdTracking Fraud Detection Challenge☆104Updated 7 years ago
- ☆29Updated 7 years ago
- KDD Cup 2020 Challenges for Modern E-Commerce Platform: Debiasing Full榜15 Half榜13☆67Updated 5 years ago
- Top 1 - code for rong360 data mining competition☆50Updated 8 years ago
- ATEC蚂蚁开发者大赛-支付风险识别-Rank7☆86Updated 7 years ago
- IJCAI2018阿里妈妈搜索广告转化率预估rank41方案☆37Updated 7 years ago
- 2018腾讯社交广告33名;☆22Updated 7 years ago
- Solutions of the forecast problem using Xgboost☆92Updated 6 years ago
- ☆52Updated 5 years ago
- My journey through kaggle, also as a reference for data cleaning, feature engineering & machine learning piplines☆32Updated 5 years ago
- This's the tool for CTR, including FM, FFM, NFFM and so on.☆319Updated 6 years ago
- Codes repository for RecSys and DeepLearnig, RecSys and ReinForcement learning and Traditioinal RecSys.☆91Updated 5 years ago
- IJCAI-17 top1 solution☆65Updated 7 years ago
- qq2018spa☆38Updated 7 years ago
- ijcai_2018 rank 60☆12Updated 7 years ago
- ☆31Updated 7 years ago
- ☆200Updated 7 years ago
- 1st place solution for the Kuaishou Active-user Forecast competition☆192Updated 6 years ago
- 天池全球城市计算AI挑战赛:A榜单模型12.28, B榜单模型12.53,多模型融合11.74(Top 3), C榜官方结果17.08(新人赛验证C榜可通过乘个衰减提升很多到12.00,A榜也有效果到11.88)☆40Updated 6 years ago