google / wasserstein-distLinks
tensorflow implementation of the Wasserstein (aka optimal transport) distance
☆74Updated 4 years ago
Alternatives and similar repositories for wasserstein-dist
Users that are interested in wasserstein-dist are comparing it to the libraries listed below
Sorting:
- Implementation of the Sliced Wasserstein Autoencoders☆92Updated 7 years ago
- Sliced Wasserstein Distance for Learning Gaussian Mixture Models☆66Updated 2 years ago
- Deep convolutional gaussian processes.☆82Updated 6 years ago
- PyTorch implementation of Neural Processes☆88Updated 6 years ago
- Uncertainty Autoencoders, AISTATS 2019☆56Updated 6 years ago
- Gabriel Peyré, Marco Cuturi, Justin Solomon, Gromov-Wasserstein Averaging of Kernel and Distance Matrices, Proc. of ICML 2016.☆75Updated 9 years ago
- Sliced Wasserstein Generator☆22Updated 7 years ago
- MMD, Hausdorff and Sinkhorn divergences scaled up to 1,000,000 samples.☆58Updated 6 years ago
- Wasserstein / earth mover's distance visualizations☆66Updated 8 years ago
- Pytorch version of "Deep Convolutional Networks as shallow Gaussian Processes" by Adrià Garriga-Alonso, Carl Rasmussen and Laurence Aitch…☆32Updated 5 years ago
- Implementation of the Sliced Wasserstein Autoencoder using PyTorch☆101Updated 7 years ago
- Keras implementation of Deep Wasserstein Embeddings☆48Updated 7 years ago
- MADE: Masked Autoencoder for Distribution Estimation☆104Updated 5 years ago
- Adversarial Non-linear Independent Component Analysis☆50Updated 8 years ago
- Optimization with orthogonal constraints and on general manifolds☆130Updated 5 years ago
- A manifold optimization library for deep learning☆254Updated 4 years ago
- ☆77Updated 8 years ago
- Implementation of "Variational Dropout and the Local Reparameterization Trick" paper with Pytorch☆49Updated 8 years ago
- A variational inference method with accurate uncertainty estimation. It uses a new semi-implicit variational family built on neural netwo…☆54Updated last year
- PyTorch implementation of Bidirectional Monte Carlo, Annealed Importance Sampling, and Hamiltonian Monte Carlo.☆52Updated 4 years ago
- ☆85Updated 11 years ago
- Group elastic net implementation in PyTorch.☆46Updated 5 years ago
- a python implementation of various versions of the information bottleneck, including automated parameter searching☆132Updated 5 years ago
- Understanding normalizing flows☆132Updated 6 years ago
- Tensorflow Implementation of "Large-scale Optimal Transport and Mapping Estimation"(ICLR2018/NIPS 2017 OTML)☆20Updated 7 years ago
- ☆29Updated 4 years ago
- Code for density estimation with nonparametric cluster shapes.☆39Updated 9 years ago
- Multiplicative Normalizing Flow (MNF) posteriors for variational Bayesian neural networks☆65Updated 5 years ago
- Sample code for running deterministic variational inference to train Bayesian neural networks☆102Updated 7 years ago
- NeurIPS 2017 best paper. An interpretable linear-time kernel goodness-of-fit test.☆67Updated 6 years ago