fire717 / Recommendation-system
推荐系统资料笔记收录/ Everything about Recommendation System. 专题/书籍/论文/产品/Demo
☆172Updated 4 years ago
Alternatives and similar repositories for Recommendation-system:
Users that are interested in Recommendation-system are comparing it to the libraries listed below
- 阅读过的推荐系统论文的归类总结,持续更新中…☆376Updated 6 years ago
- 推荐系统学习资料、源码、及读书笔记☆132Updated 6 years ago
- 项亮的《推荐系统实践》的代码实现☆487Updated 4 years ago
- A practical movie recommend project based on Item2vec.☆281Updated 4 years ago
- 推荐系统从入门到实战☆168Updated 3 years ago
- [推荐系统] Based on the scoring data set, the recommendation system is built with FM and LR as the core(基于评分数据集,构建以FM和LR为核心的推荐系统).☆303Updated 3 years ago
- 字节跳动短视频内容理解和推荐 Track2 Top8☆279Updated 5 years ago
- 推荐系统/计算广告相关仓库,个人博客https://jesse-csj.github.io/☆288Updated 3 years ago
- 推荐系统实践(基于近邻和LFM的推荐系统)☆100Updated 6 years ago
- 跟踪计算广告涉及的召回排序模型、特征工程相关的经典论文☆81Updated 5 years ago
- 基础的深度学习实验研究结果汇总笔记☆505Updated last year
- 存放推荐算法相关代码、文档、资料☆239Updated 4 years ago
- LR, FM, DeepFM, xDeepFM, DIN, CF等推荐算法代码demo。采用TFRecords作为输入,方便实际场景应用。☆103Updated 4 years ago
- 基于深度学习的CTR预估,从FM推演各深度学习CTR预估模型(附代码)☆208Updated 6 years ago
- This is a kaggle challenge project called Display Advertising Challenge by CriteoLabs at 2014.这是2014年由CriteoLabs在kaggle上发起的广告点击率预估挑战项目。☆358Updated 5 years ago
- Spark SQL 实现 ItemCF,UserCF,Swing,推荐系统,推荐算法,协同过滤☆137Updated 5 years ago
- 《推荐系统开发实战》代码及勘误☆59Updated 5 years ago
- Python 3.6 下的推荐算法解析,尽量使用简单的语言剖析原理,相似度度量、协同过滤、矩阵分解等☆104Updated 6 years ago
- CTR模型代码和学习笔记总结☆383Updated 3 years ago
- key Deep Learning engineering tricks in recsys☆799Updated 4 years ago
- 推荐系统综述☆492Updated last year
- Sharing the CTR Prediction original paper and personal study notes☆146Updated 5 years ago
- report reading paper list☆92Updated 6 years ago
- 自己学习推荐系统过程中用到的代码☆50Updated 5 years ago
- 简单的实现推荐系统的召回模型和排序模型,其中召回模型使用协同过滤算法,排序模型使用gbdt+lr算法☆59Updated 6 years ago
- YouTube推荐算法☆107Updated 3 years ago
- 公众号: 机器学习荐货情报局 所有代码☆548Updated 5 years ago
- gbdt+lr☆159Updated 6 years ago
- 深度学习500问,以问答形式对常用的概率知识、线性代数、机器学习、深度学习、计算机视觉等热点问题进行阐述,以帮助自己及有需要的读者。 全书分为18个章节,近30万字。由于水平有限,书中不妥之处恳请广大读者批评指正。 未完待续............ 如有意合作,联系sc…☆105Updated 6 years ago
- ☆262Updated 6 years ago