fff2zrx / lstm_exampleLinks
use lstm to predict value and label based on keras基于keras框架,用lstm解决回归和分类问题
☆18Updated 5 years ago
Alternatives and similar repositories for lstm_example
Users that are interested in lstm_example are comparing it to the libraries listed below
Sorting:
- 使用LSTM预测商品销量,考虑销量激增点影响☆35Updated 6 years ago
- 利用Python实现三层BP神经网络☆82Updated 7 years ago
- Time Series Prediction, Stateful LSTM; 时间序列预测,洗发水销量/股票走势预测,有状态循环神经网络☆58Updated 8 years ago
- LSTM进行时间序列预测☆19Updated 7 years ago
- 机器学习预测系统汇总:包括贝叶斯网络、马尔科夫模型、线性回归、岭回归、多项式回归、决策树回归、深度神经网络预测☆81Updated 5 years ago
- 基于Keras的LSTM多变量时间序列预测☆26Updated 7 years ago
- 用TensorFlow搭建CNN/RNN/LSTM/GRU/BiRNN/BiLSTM/BiGRU/Capsule Network等deep learning模型☆59Updated 6 years ago
- Temporal Pattern Attention for Multivariate Time Series Forecasting☆16Updated 4 years ago
- 利用深度RBM构建多分类模型☆19Updated 10 years ago
- Use LSTM to do PM2.5 prediction☆46Updated 5 years ago
- 时间序列ARIMA模型的销量预测☆64Updated 7 years ago
- 使用pytorch搭建的循环神经网络在股票数据时间序列上的应用☆108Updated 7 years ago
- Learing the process of LSTM, and use keras achieve stock prediction using LSTM。LSTM步骤解释,然后使用keras实现用LSTM预测股票走势☆13Updated 5 years ago
- 这是一个基于LSTM-RNN算法的线上金融股票价格走势预测的小项目,使用tensorflow框架实现。☆46Updated 7 years ago
- GA,PSO,LSTM...☆25Updated 7 years ago
- 基于TensorFlow的深度学习、深度 增强学习代码:NN(传统神经网络)、CNN(卷积神经网络)、RNN(递归神经网络)、LSTM(长短期记忆网络)、GAN(生成对抗网络)、DRL(深度增强学习)☆56Updated 7 years ago
- ☆26Updated 3 years ago
- LSTM长短期记忆模型预测股票涨跌☆14Updated 5 years ago
- 支持向量机,Support Vector Machine(SVM),多类分类☆31Updated 8 years ago
- 单维、多维时间序列数据预测☆11Updated 6 years ago
- 基于Keras的LSTM多变量时 间序列预测☆181Updated 7 years ago
- ☆32Updated 7 years ago
- 由时间空间成对组成的轨迹序列,通过循环神经网络lstm,自编码器auto-encode,时空密度聚类st-dbscan做异常检测☆73Updated 5 years ago
- 感知器、贝叶斯分类、决策树分类、K最近邻法、逻辑回归、支持向量机...☆128Updated 11 years ago
- Python实现经典分类回归、关联分析、聚类以及推荐算法等☆215Updated 6 years ago
- 基于seq2seq模型的风功率预测☆29Updated 5 years ago
- 《应用时间序列分析》易丹辉、王燕著; 案例Python实现☆16Updated 5 years ago
- 利用时间序列预测汽车销量☆43Updated 6 years ago
- 机器学习集成模型之Stacking各类模型及工具源码☆118Updated 4 years ago
- bp 神经网络算法☆125Updated 2 years ago