fff2zrx / lstm_exampleLinks
use lstm to predict value and label based on keras基于keras框架,用lstm解决回归和分类问题
☆18Updated 5 years ago
Alternatives and similar repositories for lstm_example
Users that are interested in lstm_example are comparing it to the libraries listed below
Sorting:
- Use LSTM to do PM2.5 prediction☆47Updated 5 years ago
- Time Series Prediction, Stateful LSTM; 时间序列预测,洗发水销量/股票走势预测,有状态循环神经网络☆56Updated 8 years ago
- 利用Python实现三层BP神经网络☆84Updated 7 years ago
- 基于Keras的LSTM多变量时间序列预测☆26Updated 8 years ago
- 使用LSTM预测商品销量,考虑销量激增点影响☆36Updated 6 years ago
- LSTM进行时间序列预测☆18Updated 7 years ago
- 基于TensorFlow的深度学习、深度增强学习代码:NN(传统神经网络)、CNN(卷积神经网络)、RNN(递归神经网络)、LSTM(长短期记忆网络)、GAN(生成对抗网络)、DRL(深度增强学习)☆57Updated 7 years ago
- 基于seq2seq模型的风功率预测☆31Updated 6 years ago
- 用TensorFlow搭建CNN/RNN/LSTM/GRU/BiRNN/BiLSTM/BiGRU/Capsule Network等deep learning模型☆60Updated 7 years ago
- 由时间空间成对组成的轨迹序列,通过循环神经网络lstm,自编码器auto-encode,时空密度聚类st-dbscan做异常检测☆74Updated 6 years ago
- bp 神经网络算法☆128Updated 2 years ago
- 使用pytorch搭建的循环神经网络在股票数据时间序列上的应用☆109Updated 7 years ago
- keras注意力机制☆19Updated 7 years ago
- ☆75Updated 7 years ago
- ☆28Updated 3 years ago
- 机器学习集成模型之Stacking各类模型及工具源码☆121Updated 5 years ago
- DataCastle国能日新功率预测题 rank21解决方案☆45Updated 6 years ago
- some small codes about deep learning☆51Updated 7 years ago
- 机器学习的特征工程,包括特征抽取、特征预处理、特征选择、特征降维。☆25Updated 6 years ago
- 基于Keras的LSTM多变量时间序列预测☆185Updated 8 years ago
- 基于波士顿房屋租赁价格数据,使用lasso回归算法 做特征选择后,分别使用线性回归、Lasso回归、Ridge回归、Elasitic Net四类回归算法构建模型(分别测试1,2,3阶)☆13Updated 6 years ago
- Temporal Pattern Attention for Multivariate Time Series Forecasting☆16Updated 5 years ago
- Learing the process of LSTM, and use keras achieve stock prediction using LSTM。LSTM步骤解释,然后使用keras实现用LSTM预测股票走势☆12Updated 5 years ago
- 机器学习预测系统汇总:包括贝叶斯网络、马尔科夫模型、线性回归、岭回归、多项式回归、决策树回归、深度神经网络预测☆90Updated 5 years ago
- GA,PSO,LSTM...☆26Updated 7 years ago
- 支持向量机(SVM)——分类预测,包括多分类问题,核函数调参,不平衡数据问题,特征降维,网格搜索,管道机制,学习曲线,混淆矩阵,AUC曲线等☆53Updated 8 years ago
- ☆32Updated 8 years ago
- 数据特征工程、各种机器学习回归模型、回归数据预处理☆43Updated 6 years ago
- Compare how ANNs, RNNs, LSTMs, and LSTMs with attention perform on time-series analysis☆42Updated 7 years ago
- Lstm+Cnn 预训练词向量 文本分类☆104Updated 7 years ago