yanshengli / DBN_LearningLinks
利用深度RBM构建多分类模型
☆19Updated 10 years ago
Alternatives and similar repositories for DBN_Learning
Users that are interested in DBN_Learning are comparing it to the libraries listed below
Sorting:
- keras注意力机制☆19Updated 7 years ago
- An example attention network with simple dataset.☆228Updated 6 years ago
- 论文基于注意力机制的卷积神经网络模型 源代码☆16Updated 8 years ago
- Hierarchical BiLSTM CNN using Keras☆78Updated 7 years ago
- RBM/DBN implementation with tensorflow attempt project☆80Updated 9 years ago
- 用TensorFlow搭建CNN/RNN/LSTM/GRU/BiRNN/BiLSTM/BiGRU/Capsule Network等deep learning模型☆60Updated 7 years ago
- ☆75Updated 7 years ago
- Python code of RBF neural network classification model☆48Updated 7 years ago
- ☆13Updated 6 years ago
- 天池智慧交通预测挑战赛 - 比赛经历分享☆15Updated 8 years ago
- some small codes about deep learning☆51Updated 7 years ago
- attention-based LSTM/Dense implemented by Keras☆300Updated 7 years ago
- 支持向量机,Support Vector Machine(SVM),多类分类☆32Updated 9 years ago
- several basic neural networks[mlp, autoencoder, CNNs, recurrentNN, recursiveNN] implements under several NN frameworks[ tensorflow, pytor…☆66Updated 3 years ago
- 用Tensorflow实现的深度神经网络。☆143Updated 3 years ago
- 使用keras框架Embedding+LSTM对短文本分类-半监督☆16Updated 8 years ago
- Industry chain data test:Sentence classify Bi-GRU-att☆22Updated 7 years ago
- 马上AI全球挑战赛-违约用户风险预测 top2-solution☆18Updated 7 years ago
- ☆20Updated 6 years ago
- 常用的特征选择方法☆67Updated 3 years ago
- 利用keras搭建的胶囊网络(capsule network文本分类模型,包含RNN、CNN、HAN等,其中keras_utils包含了capsule层和attention层的keras实现☆78Updated 7 years ago
- LSTM, CNN, CNNLSTM, BiLSTM, MLP☆10Updated 7 years ago
- 机器学习的特征工程,包括特征抽取、特征预处理、特征选择、特征降维。☆25Updated 6 years ago
- 高斯混合模型(GMM 聚类)的 EM 算法实现。☆204Updated 7 years ago
- a implement of LSTM using Keras for time series prediction regression problem☆225Updated 9 years ago
- 基于Keras的LSTM多变量时间序列预测☆185Updated 8 years ago
- PSO algorithm for multi-parameters optimizaiton☆66Updated 7 years ago
- basic hmm☆27Updated 8 years ago
- AdaboostExample☆43Updated 6 years ago
- Classification of spam messages with SVM-linear, SVM-rbf and Naive Bayes by scikit-learn☆65Updated 9 years ago