cuitno1 / Data-enhancement
Support data enhancement when there are few data sets(支持数据集较少的情况进行数据增强,包含随机的多种变化)
☆44Updated 2 years ago
Alternatives and similar repositories for Data-enhancement:
Users that are interested in Data-enhancement are comparing it to the libraries listed below
- ☆140Updated 3 years ago
- 以Swin Transformer作为骨干网络的YoloX目标检测项目☆82Updated 2 years ago
- 这里面存放了一些目标检测算法的数据增强方法。如mosaic、mixup。☆164Updated 2 years ago
- ☆78Updated 3 years ago
- 这是一个yolact-pytorch的库,可用于训练自己的数据集☆80Updated last year
- Add gui for YoloV5 using PyQt5☆157Updated 3 years ago
- 一个修改YOLOv5以使用SwinTransformer模块的代码仓库。A repository that modifies YOLOv5 to use various SwinTransformer blocks.☆110Updated 6 months ago
- YOLOv5的轻量化改进(蜂巢检测项目)☆73Updated 2 years ago
- 这是一个yolov5-v6.1-pytorch的源码,可以用于训练自己的模型。☆124Updated last year
- ImgEnhance For Obejct Detection tool☆135Updated 5 years ago
- 集yolov5、centernet、unet算法的pyqt5界面,可实现图片目标检测和语义分割☆164Updated 2 years ago
- 🌟Change the world, it will become a better place. | 以科研和竞赛为导向的最好的YOLO实践框架!☆234Updated 7 months ago
- ☆191Updated last year
- Foggy Insulator Network, Dataset and Code. Improved object detection network, synthetic fog, data augmentation, channel attention mechani…☆106Updated last year
- Pytorch implementation of the 'Slim-neck by GSConv: a lightweight-design for real-time detector architectures'☆215Updated 3 weeks ago
- annotations of yolov5-5.0☆232Updated 3 years ago
- Yolov5 with transformers☆22Updated 4 years ago
- Pyqt搭建YOLOV5目标检测界面-第一次优化后的版本☆57Updated 2 years ago
- ☆105Updated 3 years ago
- 这是一个DETR-pytorch的仓库,可以训练自己的数据集☆193Updated last year
- 本仓库主要包含了针对目标检测数据集的增强手段和源码:图像的旋转,镜像,裁剪,亮度/对比度的变换等☆134Updated 4 years ago
- XML to JSON, XML to TXT, JSON to XML, TXT to XML and label edit in computer vision☆117Updated 2 years ago
- YOLOV5 小目标检测修改版☆187Updated 3 years ago
- image classifier implement in pytoch.☆112Updated 2 years ago
- ☁️💡🎈专注于改进YOLOv7,Support to improve Backbone, Neck, Head, Loss, IoU, NMS and other modules☆203Updated last year
- ☆26Updated 3 years ago
- (雷同的那个是营销号)YOLOv8检测模块组合优化改进(成功涨点):添加GAM注意力机制;添加小目标检测头;替换为Wise_IoU损失函数+完整web端展示(实现简单目标跟踪功能)☆53Updated 10 months ago
- YOLOv8检测模块组合优化改进(成功涨点):添加GAM注意力机制;添加小目标检测头;替换为Wise_IoU损失函数+完整web端展示(实现简单目标跟踪功能)☆156Updated last year
- 基于YoloV5的一些魔改及相关部署方案☆63Updated 3 years ago
- Multi-backbone, Prune, Quantization, KD☆158Updated 2 years ago