chenshen03 / Traffic-Sign-Detection-with-RetinaNet
利用RetinaNet实现交通标志检测
☆21Updated 5 years ago
Alternatives and similar repositories for Traffic-Sign-Detection-with-RetinaNet:
Users that are interested in Traffic-Sign-Detection-with-RetinaNet are comparing it to the libraries listed below
- Traffic sign detection 交通标志、信号灯检测,请加Q群交流:904484709☆51Updated 5 years ago
- YOLOv4-MultiTask for Pytorch☆41Updated 3 years ago
- Tsinghua-Tencent 100K dataset XML and TXT Label☆51Updated 5 years ago
- Traffic light detection using deep learning with the YOLOv3 framework. PyTorch => YOLOv3☆64Updated 4 years ago
- Lane detection and classification in an end-to-end Deep Learning fashion☆91Updated 2 years ago
- VIL-100: A New Dataset and A Baseline Model for Video Instance Lane Detection (ICCV 2021)☆98Updated last year
- 用于 MobileNetV3 在自定义数据集上的量化,模型压缩90%而精度几乎不受影响,论文:HAQ: Hardware-Aware Automated Quantization with Mixed Precision☆17Updated 3 years ago
- 效果很好的lanenet网络,主干网络基于bisenetv2并对主干网络做了修改,效果远好于bisnetv2☆22Updated 3 years ago
- 最近在做车道线检测、分割的工作,读到一篇十分不错的文章对此做下总结。并用 Pytorch 实现了文章中提到的十分重要的一个判别 loss☆48Updated 5 years ago
- A Pytorch implementation of VPGNet☆17Updated 2 years ago
- Finetuning a pre-trained pytorch object detection model on traffic lights dataset.☆29Updated 5 years ago
- 百度Aistudio无人车车道线检测挑战赛/练习项目/Pytorch☆59Updated 5 years ago
- 行车环境实时语义分割与深度估计☆41Updated 5 years ago
- Using Perspective Transform to leverage bird's eye view (BEV) to estimate distance between objects.☆76Updated 4 years ago
- An unofficial implementation of the paper "Towards End-to-End Lane Detection: an Instance Segmentation Approach".☆57Updated 3 years ago
- TuSimple lane detection dataset addon with class information.☆90Updated 5 years ago
- SPFCN: Select and Prune the Fully Convolutional Networks for Real-time Parking Slot Detection☆75Updated 2 years ago
- ☆20Updated 4 years ago
- nanodet int8 量化,实测推理2ms一帧!☆37Updated 3 years ago
- parse curvelanes datasets☆39Updated 2 years ago
- Parking slot dataset for different scenes☆122Updated 4 years ago
- 分别使用OpenCV、ONNXRuntime部署YOLOPV2目标检测+可驾驶区域分割+车道线分割,一共包含54个onnx模型,依然是包含C++和Python两个版本的程序。仅仅只依赖OpenCV就能运行,彻底摆脱对任何深度学习框架的依赖。☆75Updated 2 years ago
- window 版 SMOKE,省去 linux 下编译 DConv 的 cuda 代码,并增添了 finetune 和 resume 等功能