chehongshu / DL-tenserflowLinks
Tensorflow realizes deeplearning
☆128Updated last year
Alternatives and similar repositories for DL-tenserflow
Users that are interested in DL-tenserflow are comparing it to the libraries listed below
Sorting:
- B站上炼数成金的公开课笔记☆365Updated 6 years ago
- 深度学习代码☆132Updated 6 years ago
- 天池比赛,kaggle等等(Keras/PyTorch实战)☆183Updated 5 years ago
- ☆201Updated 7 years ago
- cifar10数据集上进行图片分类,基于tensorflow框架,旨在探究不同的改进策略对分类准确率的影响,如何一步步得提高准确率☆578Updated 7 years ago
- personal practice(个人练习,实现了深度学习中的一些算法,包括:四种初始化方法(zero initialize, random initialize, xavier initialize, he initialize),深度神经网络,正则化,dropout,…☆224Updated 6 years ago
- 深度学习常用优化方法详解☆268Updated 8 years ago
- This something about deep learning on Coursera by Andrew Ng☆245Updated 7 years ago
- keras融合inception,vgg,residual_net做一个超快的迁移学习模型☆11Updated 7 years ago
- Visualization CNN model by Keras.☆72Updated 7 years ago
- B站课程代码☆146Updated 5 years ago
- 这个仓库主要包含了LSTM、卷积神经网络中,注意力机制的实现。☆136Updated 4 years ago
- ☆185Updated 6 years ago
- 一个面向初学者的,友好的Keras入门教程☆123Updated 6 years ago
- 2019Baidu&XJTU_URFC Preliminary Round Code☆32Updated 6 years ago
- 用Tensorflow实现的深度神经网络。☆142Updated 3 years ago
- TensorFlow2.0 官方教程翻译,基本概念讲解、实战项目、TensorFlow2.0编程技巧。☆202Updated 6 years ago
- Machine Learning in Action学习笔记,一个文件夹代表一个算法,每个文件夹包含算法所需的数据集、源码和图片,图片放在pic文件夹中,数据集放在在Data文件夹内。书中的代码是python2的,有不少错误,这里代码是我用python3写的,且都能直接运行☆208Updated 6 years ago
- my solution with 0.67 accuracy☆79Updated 6 years ago
- 廖星宇《深度学习入门之PyTorch》代码实践☆142Updated 7 years ago
- 【火炉炼AI】-深度学习系列文章☆45Updated 7 years ago
- cnn+rnn+attention: vgg(vgg16,vgg19)+rnn(LSTM, GRU)+attention, resnet(resnet_v2_50,resnet_v2_101,resnet_v2_152)+rnnrnn(LSTM, GRU)+attentio…☆209Updated 4 years ago
- HoG, PCA, PSO, Hard Negative Mining, Sliding Window, Edge Boxes, NMS☆170Updated last year
- 天池竞赛Baseline分享(2018广东工业智造大数据创新大赛——智能算法赛,线上0.921无调参)☆258Updated 5 years ago
- 天池智慧交通预测挑战赛解决方案☆508Updated 8 years ago
- Basic data mining model, including feature importance display☆469Updated last year
- ☆91Updated 7 years ago
- 天池全球城市计算AI挑战赛-地铁人流量预测 A榜22/2319☆135Updated 6 years ago
- 支持向量机(SVM)——分类预测,包括多分类问题,核函数调参,不平衡数据问题,特征降维,网格搜索,管道机制,学习曲线,混淆矩阵,AUC曲线等☆53Updated 8 years ago
- 微专业: 吴恩达 深度学习工程师 作业☆206Updated 7 years ago