PENGZhaoqing / TimeSeriesPrediction
天池智慧交通预测挑战赛解决方案
☆499Updated 7 years ago
Alternatives and similar repositories for TimeSeriesPrediction:
Users that are interested in TimeSeriesPrediction are comparing it to the libraries listed below
- 基于Keras的LSTM多变量时间序列预测☆176Updated 7 years ago
- 天池全球城市计算AI挑战赛-地铁人流量预测 A榜22/2319☆133Updated 6 years ago
- 2019天池大数据竞赛杭州市地铁流量流入流出预测 成绩27/2319 比赛地址https://tianchi.aliyun.com/competition/entrance/231708/introduction?spm=5176.12281957.1004.6.38b0…☆45Updated 6 years ago
- 天池全球城市计算AI挑战赛:A榜单模型12.28 , B榜单模型12.53,多模型融合11.74(Top 3), C榜官方结果17.08(新人赛验证C榜可通过乘个衰减提升很多到12.00,A榜也有效果到11.88)☆40Updated 5 years ago
- Multidimensional Time Series Prediction by using LSTM☆56Updated 5 years ago
- 时间序列ARIMA模型的销量预测☆63Updated 6 years ago
- 天池智慧交通预测挑战赛 - 比赛经历分享☆16Updated 7 years ago
- 天池DCIC2020船只轨迹数据挖掘比赛算法阶段Rank 3解决方案:☆109Updated 2 years ago
- Time series forecasting for individual household power prediction: ARIMA, xgboost, RNN☆703Updated 5 years ago
- 2019年CCF大数据与计算智能大赛乘用车细分市场销量预测冠军解决方案☆260Updated 5 years ago
- [译]tsfresh特征提取工具可提取的特征☆95Updated 6 years ago
- XGBoost 中文文档☆569Updated last year
- python实现GBDT的回归、二分类以及多分类,将算法流程详情进行展示解读并可视化,庖丁解牛地理解GBDT。Gradient Boosting Decision Trees regression, dichotomy and multi-classification ar…☆733Updated 5 years ago
- a model for traffic flow forecast☆29Updated 6 years ago
- 天池大数据平台 贵州交通赛☆32Updated last year
- 由时间空间成对组成的轨迹序列,通过循环神经网络lstm,自编码器auto-encode,时空密度聚类st-dbscan做异常检测☆71Updated 5 years ago
- 城市交通流量时空预测---山东省数据应用(青岛)创新创业大赛。http://sdac.qingdao.gov.cn/common/cmptIndex.html☆35Updated 5 years ago
- ARMA, ARIMA, ARCH model☆66Updated 4 years ago
- 用户贷款风险预测☆567Updated 7 years ago
- 使用sklearn做特征工程☆172Updated 6 years ago
- 初赛Rank1 复赛Rank1 2018 CCF 大数据与计算智能大赛 供应链需求预测 Miracccccccle☆177Updated 6 years ago
- LCTFP: A freeway traffic flow prediction model based on CNN and LSTM☆94Updated 6 years ago
- Time series prediction using LSTM classifier☆282Updated 8 years ago
- ☆84Updated 7 years ago
- 基于统计学的时间序列预测(AR,ARM).☆269Updated 4 years ago
- 运用GAN来进行交通流预测和数据修复☆22Updated 4 years ago
- 建立SARIMA-LSTM混合模型预测时间序列问题。以PM2.5值为例,使用UCI公开的自2013年1月17日至2015年12月31日五大城市PM2.5小时检测数据,将数据按时间段划分,使用SARIMA过滤其线性趋势,再对过滤后的残差使用LSTM进行预测,最后对预测结果进行…☆77Updated 6 years ago
- 5th place solution for Kaggle competition Favorita Grocery Sales Forecasting☆257Updated 7 years ago
- 阿里天池智慧交通预测挑战赛-Top7 /1716队☆13Updated 6 years ago
- 基于ARIMA时间序列的销量预测模型,实际预测准确率达90%以上,内含有测试记录和实际上线效果。☆105Updated 5 years ago