YZHANG1270 / Aspect-Based-Sentiment-AnalysisLinks
Aspect Based Sentiment Analysis 基于方面的细粒度情感分析
☆172Updated 3 years ago
Alternatives and similar repositories for Aspect-Based-Sentiment-Analysis
Users that are interested in Aspect-Based-Sentiment-Analysis are comparing it to the libraries listed below
Sorting:
- 细粒度用户评论情感分析☆123Updated 6 years ago
- 参考NER,基于BERT的电商评论观点挖掘和情感分析☆41Updated 5 years ago
- codes for paper A Multi-task Learning Model for Chinese-oriented Aspect Polarity Classification and Aspect Term Extraction☆199Updated 3 years ago
- smp ewect code☆77Updated 4 years ago
- 一个基础且完整的细粒度情感分析(ABSA,Aspect based sentiment analysis)案例☆82Updated 5 years ago
- SMP 2020年微博情感分类评测任务 第六名解决方案☆69Updated 2 years ago
- 基于预训练模型(BERT,BERT-wwm)的文本分类模板,CCF BDCI新闻情感分析A榜4/2735。☆268Updated 4 years ago
- pytorch implementation of multi-label text classification, includes kinds of models and pretrained. Especially for Chinese preprocessing.☆76Updated 5 years ago
- 细粒度的情感分析(属性词提取,句法依存分析)☆35Updated 2 years ago
- 在bert模型的pre_training基础上进行text_cnn文本分类☆78Updated 5 years ago
- 电商评论观点挖掘☆41Updated 4 years ago
- Worth-reading papers and related awesome resources on aspect-based sentiment analysis (ABSA). 值得一读的方面级情感分析论文与相关资源集合☆362Updated last year
- 多标签文本分类☆54Updated 6 years ago
- 评论上的情感分析:主题与情感词抽取☆81Updated 4 years ago
- 该库是一个项目集,包括文本分类、多标签分类、细粒度情感分析、命名实体识别,以及部分数据集等☆201Updated 6 years ago
- bert pytorch模型微调用于的多标签文本分类☆133Updated 5 years ago
- 情绪原因识别、情绪分类、情绪词典构建☆70Updated 7 years ago
- Ai_challenge2018_nlp细粒度情感分析——代码复现☆22Updated 6 years ago
- Dataset from 'Character-based BiLSTM-CRF Incorporating POS and Dictionaries for Chinese Opinion Target Extraction'☆44Updated 6 years ago
- 本项目采用Keras和Keras-bert实现文本多标签分类任务,对BERT进行微调。☆67Updated 4 years ago
- 利用bert预训练模型生成句向量或词向量☆27Updated 4 years ago
- 本项目的数据来自“互联网新闻情感分析”赛题。基于Transformer2.0库中的中文Bert模型,对新闻语料进行三分类。☆114Updated 5 years ago
- 使用两种方法(抽取式Textrank和概要式seq2seq)自动提取文本摘要☆217Updated 5 years ago
- SEBERTNets:一种面向金融领域的事件主体抽取方法☆193Updated 3 years ago
- 集成各种神经网络进行情感分类,包括CNN、LSTM、Transformer以及BERT等网络模型☆72Updated 6 years ago
- 使用分层注意力机制 HAN + 多任务学习 解决 AI Challenger 细粒度用户评论情感分析 。https://challenger.ai/competition/fsauor2018☆58Updated 6 years ago
- 自然语言处理中的基础任务,包含但不限于文本表示,文本分类,命名实体识别,关系抽取,文本生成,文本摘要等,基于tensorflow2或Pytorch,所有代码均经过测试,项目中也包含相关数据。☆143Updated 2 years ago
- Papers, models and datasets for Aspect-Category Sentiment Analysis.☆66Updated 2 years ago
- AI Challenger 2018 细粒度用户评论情感分析,排名17th,基于Aspect Level 思路的解决方案☆328Updated 6 years ago
- multi-label-classification-4-event-type☆136Updated 2 years ago