TQCAI / crack-label-toolLinks
这是一个使用Python和PyQt5开发的一个计算机视觉辅助裂缝标注工具,标注工具先用边缘检测和形态学方法预识别裂缝,然后人工对结果进行标涂或擦除。除了此方法,工具还有其他多种方法,详情请见readme.md的介绍
☆84Updated 6 years ago
Alternatives and similar repositories for crack-label-tool
Users that are interested in crack-label-tool are comparing it to the libraries listed below
Sorting:
- 本项目用深度学习的方法进行工业产品缺陷检测,替代原本人眼的产品质检。从而大幅提升工业产品合格率和降低人力成本。☆153Updated 5 years ago
- 基于深度学习方法的图像分割(含语义分割、实例分割、全景分割)。☆167Updated 5 years ago
- 基于Pytorch实现优秀的自然图像分割框架!(包括FCN、U-Net和Deeplab)☆65Updated 4 years ago
- ☆106Updated 6 years ago
- 基于深度学习的热轧带钢表面缺陷自动检测技术☆45Updated 3 years ago
- 基于无监督学习,无需训练,先使用SIFT算法提取图像特征,再使用KMeans聚类算法进行图像分类,速度非常快,精度还在提高。☆133Updated 5 years ago
- 这个是利用pytorch中的torchvision实现的一个maskrcnn的目标检测和实例分割的小例子☆113Updated 5 years ago
- 集yolov5、centernet、unet算法的pyqt5界面,可实现图片目标检测和语义分割☆174Updated 3 years ago
- ☆333Updated 8 years ago
- Faster R-CNN实现安防中安全帽佩戴目标检测☆90Updated 5 years ago
- 使用Pyqt5搭建YOLO系列多线程目标检测系统☆63Updated 2 years ago
- 基于pyqt5的图像处理软件☆71Updated 6 years ago
- 使用HOG+SVM进行图像分类☆165Updated 6 years ago
- 玻璃绝缘子缺陷检测☆33Updated 4 years ago
- 使用深度学习的缺陷检测与小目标检测☆24Updated 4 years ago
- This is a deep learning application project in the industrial field, intended to detect defects on the workpiece surface. The code is bas…☆85Updated 5 years ago
- 基于PyTorch框架实现的图像分类网络☆84Updated 4 years ago
- Detecting Faults and Measuring Severity in Welding using Radiographic Images☆51Updated 4 years ago
- ☆120Updated 4 years ago
- 铭牌印刷缺陷视觉检测系统☆40Updated 4 years ago
- 👷胶囊表面缺陷检测withTensorflow,主要检测了凹陷和缺失部分,涉及到GPU加速☆120Updated 4 years ago
- 图像分割标注工具☆31Updated 5 years ago
- 富士康-金属件-自动化尺寸测量-计算机视觉☆30Updated 2 years ago
- 无监督正样本训练 检测缺陷并分割图像☆27Updated 3 years ago
- ISAT - Image segmentation annotation tool.(图像分割标注工具,支持语义分割与实例分割)☆60Updated 2 years ago
- 支持多模型工程化的图像分类器☆25Updated 3 years ago
- Pavement surface crack datasets for DL based crack detection☆60Updated 3 years ago
- 天池2021广东工业智能制造大赛瓷砖瑕疵检测极客奖方案☆79Updated 3 years ago
- 深度学习 卷积神经网络教程 :图像识别,目标检测,语义分割,实例分割,人脸识别,神经风格转换,GAN等 https://dataxujing.github.io/CNN-paper2/☆181Updated 5 years ago
- 里面会保存许多优秀的卷积神经网络结构,这些结构可以帮助我们更好的设计网络。☆146Updated 4 years ago