MLtaotao / Udacity_P4_SmartcabLinks
应用强化学习在复杂的交通环境下自动学习最佳驾驶策略的方案,在测试环境下准确率达到100%。
☆20Updated 8 years ago
Alternatives and similar repositories for Udacity_P4_Smartcab
Users that are interested in Udacity_P4_Smartcab are comparing it to the libraries listed below
Sorting:
- Reinforcement Learning in Python☆108Updated 6 years ago
- Deep reinforcement learning agents implement by tensorflow https://ghli.org☆56Updated 6 years ago
- A simple self-driving car AI python script using the deep Q-learning algorithm☆263Updated 8 years ago
- reinforcement learning ddpg code. follow deepmind papers.☆59Updated 7 years ago
- Collection of Deep Reinforcement Learning algorithms☆124Updated 8 years ago
- 引用整理https://blog.csdn.net/yellow_red_people/article/details/80465510 一文中PyTorch平台,利用DQN模型玩Flappy Bird游戏,是一个再励学习(强化学习)实验例子。☆50Updated 6 years ago
- ☆20Updated 7 years ago
- ☆53Updated 8 years ago
- RL library based on algorithms from the book <A-introduction-to-reinforcement-learning>☆90Updated 8 years ago
- A translation of Reinforcement Learning: An Introduction☆114Updated 7 years ago
- Reinforcement learning of driving a racing car in TORCS using DDPG algorithm☆14Updated 7 years ago
- This code is written for the blogs☆270Updated 9 years ago
- ☆391Updated 5 years ago
- 这是一个学习强化学习基础原理的仓库,主要包括了《深入浅出强化学习原理入门》书中一些例子和课后作业的代码☆268Updated 7 years ago
- 我的强化学习笔记和学习材料 still updating ... ...☆363Updated 3 months ago
- Implementation of Machine Learning Algorithms☆408Updated 6 years ago
- An Python N-in-Row game based on Monte Carlo Tree Search and UCT RAVE☆51Updated 8 years ago
- ☆258Updated 8 years ago
- Practice of Deep Reinforcement Learning with Keras and gym.☆156Updated 6 years ago
- Models built with TensorFlow☆34Updated 8 years ago
- Book_DeepLearning_Practice☆31Updated 8 years ago
- 使用pytorch构建深度强化学习模型DQN☆26Updated 8 years ago
- A Toolbox for deep reinforcement learning(QLearning)☆38Updated 7 years ago
- Tensorflow + OpenAI Gym implementation of Deep Q-Network (DQN), Double DQN (DDQN), Dueling Network and Deep Deterministic Policy Gradient…☆79Updated 8 years ago
- Reinforcement learning with docker and torcs☆20Updated 8 years ago
- 根据隐马尔科夫原理,依据Q-learning的加强学习算法, 构建一个能够自学习交通规则 并且能够经过加强学习训练之后 找到最佳规划路线 并且能在规定时间到达. 目前优 化后的成功率达到99%. 这个是自动驾驶路线规划的重要部分.☆10Updated 8 years ago
- Third Project of the Udacity Self-Driving Car Nanodegree Program☆234Updated 8 years ago
- Using Keras and Deep Deterministic Policy Gradient to play TORCS☆727Updated 8 years ago
- Codes for understanding Reinforcement Learning( updating... )☆25Updated 7 years ago
- Minimal implementations of reinforcement learning algorithms by Tensorflow☆29Updated 8 years ago