ChristianYang37 / fast_yolov7_pytorch
Using pruning and quantization algorithm to accelerate your yolov7's inference.
☆17Updated last year
Related projects ⓘ
Alternatives and complementary repositories for fast_yolov7_pytorch
- ☆37Updated last year
- Make it easier for yolov6 to change the network structure☆69Updated last week
- provide some new architecture, channel pruning and quantization methods for yolov5☆29Updated 3 weeks ago
- 🚀🚀🚀YOLOC is Combining different modules to build an different Object detection model.Including YOLOv3、YOLOv4、Scaled_YOLOv4、YOLOv5、YOLO…☆73Updated 2 years ago
- [T-PAMI'23] PAGCP for the compression of YOLOv5☆112Updated last year
- 将YOLOv5-Lite代码中的head更换为YOLOX head☆24Updated 2 years ago
- Easy Training Official YOLOv8、YOLOv7、YOLOv6、YOLOv5 and Prune all_model using Torch-Pruning!☆50Updated 10 months ago
- ☆30Updated 2 years ago
- Quantization Aware Training☆58Updated 10 months ago
- 深度学习, especially CV☆39Updated this week
- ☆83Updated last year
- YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite☆65Updated 2 years ago
- Implementation of paper - Multi-Branch Auxiliary Fusion YOLO with Re-parameterization Heterogeneous Convolutional for accurate object det…☆57Updated this week
- 使用pytorch_quantization对yolov8进行量化☆93Updated last year
- ☆14Updated last year
- Using model pruning method to obtain compact models Pruned-YOLOv5 based on YOLOv5.☆57Updated 3 years ago
- ☆37Updated last year
- yolov5 tensorrt int8量化方法汇总☆59Updated 11 months ago
- 可以训练yolov5(v6.0)、yolox、小型网络,添加注意力机制☆63Updated 2 years ago
- 基于YoloV5的一些魔改及相关部署方案☆63Updated 2 years ago
- 实现对YOLOX的剪枝操作,添加了卷积层和BN层融合推理,添加中间层可视化功能,可实现预测和训练日志保存☆42Updated last year
- ☆20Updated last year
- ☆51Updated last year
- yolov5 knowledge distilling☆23Updated last year
- yolov5 pruning (SFP Pruning、Nework Slimming)☆18Updated 3 years ago
- https://zhuanlan.zhihu.com/p/430850089☆147Updated 2 years ago
- YOLOv7+KLD☆37Updated last year
- 本项目支持对剪枝后的yolov5模型进行知识蒸馏训练(This project supports knowledge distillation training for the pruned YOLOv5 model)☆79Updated 9 months ago
- ☆22Updated 2 years ago