FlyleafPaopao / yolov8-multi-keypoint
This repo would give multi-task keypoint detect code based yolov8. The landmarks or keypoints with different classes and numbers can be detected at the same time.
☆12Updated last year
Alternatives and similar repositories for yolov8-multi-keypoint:
Users that are interested in yolov8-multi-keypoint are comparing it to the libraries listed below
- ☆13Updated last year
- yolov8的训练以及在旭日x3派上的部署☆17Updated last year
- ☆22Updated last year
- ☆23Updated 2 years ago
- ☆9Updated 10 months ago
- 使用onnxruntime部署YOWOv2视频动作检测,包含C++和Python两个版本的程序☆21Updated 10 months ago
- yolov8 旋转目标检测部署,瑞芯微RKNN芯片部署、地平线Horizon芯片部署、TensorRT部署☆24Updated 7 months ago
- 基于yolov7 加入 depth回归☆18Updated 2 years ago
- yolov8obb 旋转目标检测部署rknn的C++代码☆17Updated 6 months ago
- FastSAM 部署版本,便于移植不同平,部署简单、运行速度快。☆16Updated 8 months ago
- CEAM-YOLOv7: Improved YOLOv7 Based on Channel Expansion and Attention Mechanism for Driver Distraction Behavior Detection☆50Updated last year
- ☆23Updated 2 years ago
- 记录yolov5的TensorRT量化及推理代码,经实测可运行于Jetson平台☆16Updated last year
- yolov8 ptq量化实战☆13Updated last year
- yolov8n 部署版,基于官方的导出onnx脚本导出onnx模型,在不同平台上进行部署测试,便于移植不同平台(onnx、tensorRT、rknn、Horizon)。☆38Updated last year
- 支持yolov8 Reid行人重识别,支持训练和检测☆10Updated 9 months ago
- 手摸手 美团 YOLOv6模型训练和TensorRT端到端部署方案教程☆30Updated 2 years ago
- Quantize yolov7 using pytorch_quantization.🚀🚀🚀☆10Updated last year
- yolov8seg 部署版本,便于移植不同平台(onnx、tensorRT、rknn、Horizon)。☆26Updated last year
- 对 tensorRT_Pro 开源项目理解☆20Updated last year
- yolov8seg 瑞芯微 rknn 板端 C++部署,使用平台 rk3588。☆23Updated 8 months ago
- 高效部署:YOLO X, V3, V4, V5, V6, V7, V8, EdgeYOLO TRT推理 ™️ ,前后处理均由CUDA核函数实现 CPP/CUDA🚀☆49Updated last year
- YOLOv5 Quantization Aware Training with TensorRT☆13Updated 2 years ago
- yolov5模型训练后量化代码☆19Updated 4 years ago
- Multi-thread tracking of YOLOv5 and ByteTrack implemented by C++, accelerated by TensorRT. YOLOv5 和 ByteTrack 的多线程追踪 C++ 实现, 使用 TensorRT …☆68Updated last year
- https://github.com/shouxieai/hard_decode_trt windows编译版本☆13Updated 2 years ago
- yolov8seg 部署版本,便于移植不同平台(onnx、tensorRT、rknn、Horizon),全网部署最简单、速度最快的部署方式。☆9Updated 8 months ago
- ☆16Updated last year