425776024 / bertsum-chineseLinks
chinese bertsum ; bertsum 抽取式模型中文版本;给出案例数据、全代码注释;下载即可训练、预测、学习
☆205Updated 2 years ago
Alternatives and similar repositories for bertsum-chinese
Users that are interested in bertsum-chinese are comparing it to the libraries listed below
Sorting:
- 端到端的长本文摘要模型(法研杯2020司法摘要赛道)☆398Updated last year
- ☆76Updated 6 years ago
- 整理一下在keras中使用T5模型的要点☆173Updated 3 years ago
- Modify Chinese text, modified on LaserTagger Model. 文本复述,基于lasertagger做中文文本数据增强。☆322Updated last year
- Use deep models including BiLSTM, ABCNN, ESIM, RE2, BERT, etc. and evaluate on 5 Chinese NLP datasets: LCQMC, BQ Corpus, ChineseSTS, OCN…☆76Updated 3 years ago
- ☆440Updated 3 years ago
- pytorch中文语言模型预训练☆390Updated 5 years ago
- 以词为基本单位的中文BERT☆471Updated 3 years ago
- 微调预训练语言模型,解决多标签分类任务(可加载BERT、Roberta、Bert-wwm以及albert等知名开源tf格式的模型)☆141Updated 5 years ago
- some baselines for lic2020 (http://lic2020.cipsc.org.cn/)☆219Updated 5 years ago
- Keyphrase or Keyword Extraction 基于预训练模型的中文关键词抽取方法(论文SIFRank: A New Baseline for Unsupervised Keyphrase Extraction Based on Pre-trained La…☆431Updated 5 years ago
- implementation several deep text match (text similarly) models for keras . cdssm, arc-ii,match_pyramid, mvlstm ,esim, drcn ,bimpm, bert, …☆291Updated 4 years ago
- Chinese Language Generation Evaluation 中文生成任务基准测评☆248Updated 4 years ago
- 中文问题句子相似度计算比赛及方案汇总☆303Updated 4 years ago
- Named Recognition Entity based on BERT and CRF 基于BERT+CRF的中文命名实体识别☆185Updated 2 years ago
- using bilstm-crf,bert and other methods to do sequence tagging task☆415Updated 2 years ago
- 中文NLP数据集☆158Updated 6 years ago
- 天池大赛疫情文本挑战赛线上第三名方案分享☆228Updated 4 years ago
- 基于transformer的指针生成网络☆93Updated 4 years ago
- 基于Transformers的文本分类☆342Updated 3 years ago
- ☆157Updated 4 years ago
- Pytorch Bert Finetune in Chinese Text Classification☆221Updated last year
- ☆268Updated 5 years ago
- NER(命名实体识别)中文语料,一站式获取☆131Updated 5 years ago
- 法研杯2019相似案例匹配第二名解决方案(附数据集和文档),CAIL2020/2021司法考试赛道冠军队伍☆249Updated 4 years ago
- 天池 疫情相似句对判定大赛 线上第一名方案☆437Updated 4 years ago
- 中国法研杯CAIL2019要素抽取任务第三名方案分享☆139Updated 4 years ago
- albert + lstm + crf实体识别,pytorch实现。识别的主要实体是人名、地名、机构名和时间。albert + lstm + crf (named entity recognition)☆138Updated 2 years ago
- ☆356Updated 4 years ago
- ☆279Updated 3 years ago