guanyibing / Fault-diagnosisLinks
基于深度学习机械设备故障诊断模型
☆168Updated 7 years ago
Alternatives and similar repositories for Fault-diagnosis
Users that are interested in Fault-diagnosis are comparing it to the libraries listed below
Sorting:
- 基于深度学习的滚动轴承故障诊断方法☆192Updated 6 years ago
- 使用TensorFlow建立简单的轴承故障诊断模型☆102Updated 7 years ago
- ☆208Updated 5 years ago
- CNN for mechanical fault diagnosis☆304Updated 7 years ago
- 轴承故障检测 训练赛第30名代码☆130Updated 6 years ago
- ☆139Updated 7 years ago
- wdcnn轴承故障模型☆369Updated 7 years ago
- 毕设研究课题:根据轴承的振动序列数据来诊断轴承故障。☆127Updated 4 years ago
- [深度应用]·DC竞赛轴承故障检测开源Baseline(基于Keras1D卷积 val_acc:0.99780)☆190Updated 5 years ago
- ☆60Updated 5 years ago
- with LSTM method to solve bearing fault diagnosis classification☆61Updated 7 years ago
- 1DCNN Fault Detection(1DCNN的轴承故障诊断)☆169Updated 3 years ago
- CNN applied to bearing signals for analysis☆88Updated 5 years ago
- 西储大学轴承数据集故障诊断的仿真平台☆118Updated last year
- 轴承有3种故障:外圈故障,内圈故障,滚珠故障,外加正常的工作状态。如表1所示,结合轴承的3种直径(直径1,直径2,直径3),轴承的工作状态有10类☆32Updated 6 years ago
- 利用西储大学开源的轴承故障数据,开发简单的人工神经网络,以实现对轴承故障的检测及识别。☆48Updated 4 years ago
- 基于无监督和迁移学习的旋转机械故障诊断☆32Updated 5 years ago
- 基于注意力机制的少量样本故障诊断 pytorch☆234Updated this week
- 轴承故障诊断☆88Updated 2 years ago
- ☆104Updated 5 years ago
- 这是一个首层卷积为宽卷积的深度神经网络Deep Convolutional Neural Networks with Wide First-layer Kernels (WDCNN)的实现,该模型 具有优越的抗噪能力,可用于轴承的智能故障诊断。☆46Updated 2 years ago
- 1D CNN for CWRU rolling bearings dataset☆39Updated 6 years ago
- 基于深度学习的机械设备故障诊断方法研究☆41Updated 3 years ago
- to prediction the remain useful life of bearing based on 2012 PHM data☆290Updated 4 years ago
- ☆98Updated 2 years ago
- One model for RUL and fault prognostic prediction on XJTU bearing dataset☆95Updated 5 years ago
- 采用一种包含加权水平可见图(WHVG)的图卷积网络(GCN),对采样的轴承震动时间序列数据分析,进行滚动轴承故障诊断。其中,对HVG中两节点的边,以节点距离的倒数作为权重进行加权,以削弱噪声节点对其他距离较远节点的影响。☆41Updated 2 years ago
- TensorFlow implementation of a CNN based mechanical science paper☆46Updated 7 years ago
- LSTM和SVM实现设备故障诊断☆49Updated 6 years ago
- domain adaption with LSGAN for bearing fault diagnosis☆74Updated 6 years ago