xiaobh2010 / linearregression-lasso-ridge-elasticnet
基于波士顿房屋租赁价格数据,使用lasso回归算法做特征选择后,分别使用线性回归、Lasso回归、Ridge回归、Elasitic Net四类回归算法构建模型(分别测试1,2,3阶)
☆14Updated 5 years ago
Alternatives and similar repositories for linearregression-lasso-ridge-elasticnet:
Users that are interested in linearregression-lasso-ridge-elasticnet are comparing it to the libraries listed below
- 机器学习的特征工程,包括特征抽取、特征预处理、特征选择、特征降维。☆25Updated 5 years ago
- 利用Python实现三层BP神经网络☆80Updated 6 years ago
- 机器学习预测系统汇总:包括贝叶斯网络、马尔科夫模型、线性回归、岭回归、多项式回归、决策树回归、深度神经网络预测☆70Updated 4 years ago
- Time Series Prediction, Stateful LSTM; 时间序列预测,洗发水销量/股票走势预测,有状态循环神经网络☆55Updated 7 years ago
- 基于Keras的LSTM多变量时间序列预测☆23Updated 7 years ago
- 常用的特征选择方法☆68Updated 2 years ago
- Using K-NN, SVM, Bayes, LSTM, and multi-variable LSTM models on time series forecasting☆48Updated 5 years ago
- 支持向量机,Support Vector Machine(SVM),多类分类☆30Updated 8 years ago
- 基于深度学习的溶解氧时间序列预测模型☆27Updated 4 years ago
- 基于seq2seq模型的风功率预测☆27Updated 5 years ago
- 使用bp神经网络预测股票价格。BP neural network is used to predict the stock price.☆35Updated 4 years ago
- 机器学习预测模型,分别用逻辑回归,决策树,随机森林,神经网络,XGBOOST和支持向量机算法建模,交叉验证,并选出AUC最优的模型。特征工程优化后,AUC值达到0.8259☆54Updated 4 years ago
- ☆32Updated 5 years ago
- 数据预处理之缺失值处理,特征选择☆21Updated 5 years ago
- 支持向量机(SVM)——分类预测,包括多分类问题,核函数调参,不平衡数据问题,特征降维,网格搜索,管道机制,学习曲线,混淆矩阵,AUC曲线等☆52Updated 7 years ago
- 基于Keras框架,结合LSTM/GRU/Arima/WNN实现多方式的水质参数预测☆21Updated 6 years ago
- Compare how ANNs, RNNs, LSTMs, and LSTMs with attention perform on time-series analysis☆42Updated 6 years ago
- A LSTM CNN stock price prediction model(SP500 market)☆10Updated 4 years ago
- PSO On neural Network and LSTM☆19Updated 3 years ago
- 建立SARIMA-LSTM混合模型预 测时间序列问题。以PM2.5值为例,使用UCI公开的自2013年1月17日至2015年12月31日五大城市PM2.5小时检测数据,将数据按时间段划分,使用SARIMA过滤其线性趋势,再对过滤后的残差使用LSTM进行预测,最后对预测结果进行…☆71Updated 6 years ago
- 一种有效的电力负荷预测方法☆58Updated 5 years ago
- 使用CNN进行时间序列预测,这里的标签可以是多维的(即可以进行长期预测)。Using CNN for time series prediction, the label here can be multidimensional (that is, it can be use…☆19Updated 4 years ago
- Regression prediction of time series data using LSTM, SVM and random forest. 使用LSTM、SVM、随机森林对时间序列数据进行回归预测,注释拉满。☆182Updated 4 years ago
- 机器学习集成模型之Stacking各类模型及工具源码☆114Updated 4 years ago
- Using transformer models to do multi-step equity time series prediction.☆12Updated 3 years ago
- PSO-Based-SVR to forecast potential delay time of bus arrival. Applied on City of Edmonton real data.☆42Updated 8 years ago
- 利用时间序列预测汽车销量☆37Updated 6 years ago