wangyuyunmu / Recommended-system-practice
项亮等《推荐系统实践》算法代码
☆29Updated 4 years ago
Alternatives and similar repositories for Recommended-system-practice:
Users that are interested in Recommended-system-practice are comparing it to the libraries listed below
- 推荐系统---实验+复现+创新☆51Updated last year
- 推荐系统与深度学习☆35Updated 3 years ago
- 基于netflix prize 和 H&M开源数据集,从零开始构建企业级推荐系统。☆82Updated 2 months ago
- 实现了基于协同过滤(UserCF)的模型、基于隐语义(LFM)的模型、基于图(PersonalRank)的模型,并结合三种模型的结果给出最终结果的推荐算法☆24Updated 6 years ago
- 基于 Pytorch 实现推荐系统相关的算法☆174Updated 3 years ago
- 推荐系统论文☆23Updated 5 years ago
- Codes repository for RecSys and DeepLearnig, RecSys and ReinForcement learning and Traditioinal RecSys.☆90Updated 5 years ago
- Share Some Recommender System Paper I read.☆66Updated 3 years ago
- 本项目使用两种算法来实现一个电影推荐系统,一个是CNN,另一个是矩阵分解的协同过滤 。☆133Updated 6 years ago
- 基于王喆老师的深度学习推荐系统书籍,主要用pytorch实现了里面涉及到的算法,有很少数量的算法是用tf2.0实现的。在这个过程中也参考很多大佬的复现代码,希望自己能持续学习 多多去实现。☆45Updated 2 years ago
- 存放推荐算法相关代码、文档、资料☆242Updated 4 years ago
- 深度学习与推荐系统学习,理论结合代码更香。☆116Updated 2 years ago
- 使用MovieLens数据集实现了基于Auto Encoder(AE), Variational Auto Encoder(VAE), BERT的深度学习电影推荐系统☆70Updated 4 years ago
- 推荐系统之深度学习模型,框架采用tensorflow2☆56Updated 2 years ago
- movie recommender on ml-1m dataset by nerual network☆32Updated 6 years ago
- 优质的推荐算法资源汇总☆122Updated 3 years ago
- 自己学习推荐系统过程中用到的代码☆50Updated 5 years ago
- Pytorch for autorec with collaborative filtering☆33Updated 6 years ago
- 推荐算法实战(Recommend algorithm)☆179Updated 8 months ago
- collaborative filtering methods for recommender systems☆62Updated 3 years ago
- 阿里DIEN与DIN Tensorflow2.0 复现☆55Updated 4 years ago
- 深度学习推荐算法☆22Updated 3 years ago
- all kinds of recommendation algorithms implement.☆123Updated 4 years ago
- ☆93Updated 4 years ago
- Recommend System☆29Updated 4 years ago
- 用来处理freebase, kb4rec, movielens它们数据集的项目☆34Updated 4 years ago
- CF 推荐系统的实现,以及我的改进。使用 MovieLens-1m 数据集,通过 MAE、Persicion、Recall 检验准确性。☆11Updated 4 years ago
- 简单的实现推荐系统的召回模型和排序模型,其中召回模型使用协同过滤算法,排序模型使用gbdt+lr算法☆59Updated 6 years ago
- Deep Interest Network for Click-Through Rate Prediction / Deep Interest Evolution Network for Click-Through Rate Prediction☆77Updated 4 years ago
- ☆31Updated 5 years ago