vvanggeng / TSC-CNNLinks
基于一维卷积神经网络(1D-CNN)的多元时间序列分类
☆78Updated 4 years ago
Alternatives and similar repositories for TSC-CNN
Users that are interested in TSC-CNN are comparing it to the libraries listed below
Sorting:
- 由于CSDN博客里面不能直接上代码链接,涉嫌营销推广,因此建一个github仓库用于整理这些代码链接☆153Updated 2 years ago
- 轴承故障检测 训练赛第30名代码☆130Updated 6 years ago
- [深度应用]·DC竞赛轴承故障检测开源Baseline(基于Keras1D卷积 val_acc:0.99780)☆190Updated 5 years ago
- 一维卷积神经网络☆41Updated 5 years ago
- Encoding time series as images using GAF operation by pyts.☆223Updated 3 years ago
- This is a case of bearing fault intelligent diagnosis. The program is written in MATLAB. The main techniques used are feature detection a…☆52Updated 4 years ago
- 使用改良的Transformer模型应用于多维时间序列的分类任务上☆22Updated 4 years ago
- 1DCNN Fault Detection(1DCNN的轴承故障诊断)☆167Updated 3 years ago
- ☆104Updated 5 years ago
- 毕设研究课题:根据轴承的振动序列数据来诊断轴承故障。☆127Updated 4 years ago
- A python program to build ResNet-1D model and DRSN-1D model in keras environment.☆11Updated 2 years ago
- 深度残差收缩网络处理一维时域信号☆37Updated 2 years ago
- 使用改良的Transformer模型应用于多维时间序列的分类任务上☆11Updated 4 years ago
- 轴承有3种故障:外圈故障,内圈故障,滚珠故障,外加正常的工作状态。如表1所示,结合轴承的3种直径(直径1,直径2,直径3),轴承的工作状态有10类☆32Updated 6 years ago
- 1D CNN for CWRU rolling bearings dataset☆39Updated 6 years ago
- Deep Residual Shrinkage Networks for Intelligent Fault Diagnosis(pytorch) 深度残差收缩网络应用于故障诊断☆229Updated 2 years ago
- CSDN中的代码 在github中建立仓库存储☆28Updated 2 years ago
- 信号分解算法,EMD,EEMD,CEEMDAN,VMD以及常见的熵☆11Updated 10 months ago
- Siamese network for bearing fault diagnosis☆88Updated 5 years ago
- 利用西储大学开源的轴承故障数据,开发简单的人工神经网络,以实现对轴承故障的检测及识别。☆48Updated 4 years ago
- 基于无监督和迁移学习的旋转机械故障诊断☆32Updated 5 years ago
- for de-noising☆33Updated 7 years ago
- with LSTM method to solve bearing fault diagnosis classification☆61Updated 7 years ago
- CNN applied to bearing signals for analysis☆88Updated 5 years ago
- 使用改良的Transformer模型应用于多维时间序列的分类任务上☆88Updated 4 years ago
- 故障诊断方面的论文阅读☆16Updated 5 years ago
- ☆208Updated 5 years ago
- 基于深度学习的滚动轴承故障诊断方法☆192Updated 6 years ago
- 一维卷积网络用于航空发动机剩余寿命预测☆32Updated 6 years ago
- ☆60Updated 5 years ago