vvanggeng / TSC-CNNLinks
基于一维卷积神经网络(1D-CNN)的多元时间序列分类
☆78Updated 5 years ago
Alternatives and similar repositories for TSC-CNN
Users that are interested in TSC-CNN are comparing it to the libraries listed below
Sorting:
- Encoding time series as images using GAF operation by pyts.☆225Updated 3 years ago
- 由于CSDN博客里面不能直接上代码链接,涉嫌营销推广,因此建一个github仓库用于整理这些代码链接☆153Updated 2 years ago
- [深度应用]·DC竞赛轴承故障检测开源Baseline(基于Keras1D卷积 val_acc:0.99780)☆195Updated 5 years ago
- 轴承故障检测 训练赛第30名代码☆131Updated 6 years ago
- 使用改良的Transformer模型应用于多维时间序列的分类任务上☆23Updated 4 years ago
- LSTM + Wavelet(长短期记忆神经网络+小波分析):深度学习与数字信号处理的结合☆179Updated 6 years ago
- 一维卷积神经网络☆41Updated 6 years ago
- 毕设研究课题:根据轴承的振动序列数据来诊断轴承故障。☆127Updated 4 years ago
- The deep residual shrinkage network is a variant of deep residual networks.☆483Updated 2 weeks ago
- This is a case of bearing fault intelligent diagnosis. The program is written in MATLAB. The main techniques used are feature detection a…☆52Updated 4 years ago
- 1DCNN Fault Detection(1DCNN的轴承故障诊断)☆174Updated 3 years ago
- for de-noising☆34Updated 7 years ago
- Deep Residual Shrinkage Networks for Intelligent Fault Diagnosis(pytorch) 深度残差收缩网络应用于故障诊断☆232Updated 2 years ago
- A python program to build ResNet-1D model and DRSN-1D model in keras environment.☆11Updated 2 years ago
- ☆273Updated 7 years ago
- 使用改良的Transformer模型应用于多维时间序列的分类任务上☆11Updated 4 years ago
- Deep learning in PHM,Deep learning in fault diagnosis,Deep learning in remaining useful life prediction☆455Updated 4 years ago
- with LSTM method to solve bearing fault diagnosis classification☆61Updated 8 years ago
- ☆49Updated 2 years ago
- ☆105Updated 6 years ago
- Using LSTM to predict Remaining Useful Life of CMAPSS Dataset☆90Updated 6 years ago
- ☆211Updated 5 years ago
- 经验模态分解 (Empirical Mode Decomposition)☆56Updated 5 years ago
- 完整的航空发动机一维卷积神经网络训练模型☆60Updated 6 years ago
- use TCN and Transformer model for "Hourly Energy Consumption" data☆13Updated 3 years ago
- 故障诊断方面的论文阅读☆16Updated 5 years ago
- to prediction the remain useful life of bearing based on 2012 PHM data☆298Updated 4 years ago
- 基于深度学习机械设备故障诊断模型☆169Updated 7 years ago
- 基于无监督和迁移学习的旋转机械故障诊断☆33Updated 5 years ago
- 深度残差收缩网络处理一维时域信号☆37Updated 2 years ago