triple-Mu / AI-on-BoardLinks
Examples of AI model running on the board, such as horizon/rockchip and so on.
☆21Updated 2 years ago
Alternatives and similar repositories for AI-on-Board
Users that are interested in AI-on-Board are comparing it to the libraries listed below
Sorting:
- yolov8pose 瑞芯微 rknn 板端 C++部署。☆36Updated last year
- NanoTrack(@HonglinChu), C++ TensorRT deployment. MAX 250 FPS!☆28Updated last year
- ☆40Updated 2 years ago
- yolov8seg 瑞芯微 rknn 板端 C++部署,使用平台 rk3588。☆28Updated last year
- yolov11 瑞芯微 rknn 板端 C++部署,使用平台 rk3588。☆66Updated 7 months ago
- python版本基于rk3588的NanoTrack,每秒可达120FPS☆123Updated 3 years ago
- 启动多线程, relu激活, 3588的yolo部署, 帧率150以上.☆22Updated last year
- 基于yolov5的C++单目摄像头测距☆38Updated last year
- rknn-3588部署yolov5,利用线程池实现npu推理加速;Deploying YOLOv5 on RKNN-3588, utilizing a thread pool to achieve NPU inference acceleration.☆78Updated 5 months ago
- RKNN-YOLOV5-BatchInference-MultiThreadingYOLOV5多张图片多线程C++推理☆21Updated last year
- 基于 TensorRT 的 C++ 高性能单目标跟踪 推理,支持算法OSTrack、LightTrack。☆56Updated last year
- ☆29Updated 3 years ago
- YoloV8 NPU for the RK3566/68/88☆76Updated last year
- yolov8 旋转目标检测部署,瑞芯微RKNN芯片部署、地平线Horizon芯片部署、TensorRT部署☆28Updated last year
- YoloV10 NPU for the RK3566/68/88☆18Updated last year
- PyTorch-->ONNX-->RKNN☆127Updated 3 years ago
- yolov8s-pose using ncnn inferring!☆43Updated 2 years ago
- 高效部署:YOLO X, V3, V4, V5, V6, V7, V8, EdgeYOLO TRT推理 ™️ ,前后处理均由CUDA核函数实现 CPP/CUDA🚀☆52Updated 2 years ago
- yolov8 瑞芯微 rknn 板端 C++部署。☆113Updated last year
- 海康威视工业相机在瑞芯微RK3588下调用NPU跑YOLOv5☆31Updated 2 years ago
- 基于DeepStream6.0和yolov5-6.0的目标检测☆19Updated 3 years ago
- yolov8n 目标检测部署版本,便于移植不同平台(onnx、tensorRT、rknn、Horizon),全网部署最简单、速度最快的部署方式。☆46Updated last year
- RT-DETRv2 tensorrt C++ 部署☆21Updated 11 months ago
- yolov8n 部署版,基于官方的导出onnx脚本导出onnx模型,在不同平台上进行部署测试,便于移植不同平台(onnx、tensorRT、rknn、Horizon)。☆38Updated 2 years ago
- gstreamer rtsp client support rockchip and jetson nx for C/C++ Python☆63Updated last year
- yolov8s在rk3588的推理部署,并使用多线程池并行npu推理加速☆46Updated 11 months ago
- yolov11(yolov8)尝试了7种不同的部署方法,并对每种方法的优势进行了简单总结。不同的平台、不同的时耗或CPU占用需求,总有一种方法是适用的。针对想入门部署的也是一个很好的参考学习资料。☆39Updated 8 months ago
- yolov11 的tensorRT C++ 部署,后处理使用cuda实现比较耗时的操作。☆44Updated last month
- YOLOv5 for RK3588☆87Updated last year
- ☆40Updated last year