triple-Mu / AI-on-Board
Examples of AI model running on the board, such as horizon/rockchip and so on.
☆19Updated last year
Related projects ⓘ
Alternatives and complementary repositories for AI-on-Board
- ☆32Updated last year
- yolov8 旋转目标检测部署,瑞芯微RKNN芯片部署、地平线Horizon芯片部署、TensorRT部署☆21Updated 5 months ago
- NanoTrack(@HonglinChu), C++ TensorRT deployment. MAX 250 FPS!☆22Updated last year
- yolov11 的tensorRT C++ 部署,后处理使用cuda实现比较耗时的操作。☆14Updated 2 weeks ago
- 启动多线程, relu激活, 3588的yolo部署, 帧率150以上.☆17Updated last year
- Easy Training Official YOLOv8、YOLOv7、YOLOv6、YOLOv5 and Prune all_model using Torch-Pruning!☆50Updated 10 months ago
- 基于 TensorRT 的 C++ 高性能单目标跟踪推理,支持算法OSTrack、LightTrack。☆39Updated last year
- yolov8pose 瑞芯微 rknn 板端 C++部署。☆32Updated 10 months ago
- rknn-3588部署yolov5,利用线程池实现npu推理加速;Deploying YOLOv5 on RKNN-3588, utilizing a thread pool to achieve NPU inference acceleration.☆47Updated 2 months ago
- RKNN version demo of [CVPR21] LightTrack: Finding Lightweight Neural Network for Object Tracking via One-Shot Architecture Search☆18Updated 2 years ago
- YoloV10 NPU for the RK3566/68/88☆10Updated 5 months ago
- python版本基于rk3588的NanoTrack,每秒可达120FPS☆91Updated 2 years ago
- FastSAM 部署版本,便于移植不同平,部署简单、运行速度快。☆12Updated 5 months ago
- yolov8seg 瑞芯 微 rknn 板端 C++部署,使用平台 rk3588。☆18Updated 6 months ago
- simple yolov5 rtspserver for rk3588☆26Updated 2 months ago
- yolov8n 目标检测部署版本,便于移植不同平台(onnx、tensorRT、rknn、Horizon),全网部署最简单、速度最快的部署方式。☆28Updated 8 months ago
- yolov5 detector using rockchip rknn in C++☆35Updated 2 years ago
- ☆16Updated last year
- C++版本的sort算法,可无缝添加在检测器后进行实时多目标跟踪☆11Updated last year
- ☆42Updated 2 years ago
- yolov10 瑞芯微 rknn 板端 C++部署,使用平台 rk3588。☆61Updated 4 months ago
- C++版本基于libtorch的NanoTrack跟踪算法☆40Updated last year
- ☆20Updated last month
- yolov8 瑞芯微 rknn 板端 C++部署。☆95Updated 10 months ago
- ☆22Updated 2 years ago
- 基于DeepStream6.0和yolov5-6.0的目标检测☆19Updated 3 years ago
- ☆22Updated 2 years ago
- PyTorch-->ONNX-->RKNN☆115Updated 2 years ago
- rknn inference☆42Updated 2 years ago
- yolov8n 部署版,基于官方的导出onnx脚本导出onnx模型,在不同平台上进行部署测试,便于移植不同平台(onnx、tensorRT、rknn、Horizon)。☆36Updated last year