triple-Mu / AI-on-BoardLinks
Examples of AI model running on the board, such as horizon/rockchip and so on.
☆21Updated 2 years ago
Alternatives and similar repositories for AI-on-Board
Users that are interested in AI-on-Board are comparing it to the libraries listed below
Sorting:
- ☆40Updated 2 years ago
- YoloV8 NPU for the RK3566/68/88☆76Updated last year
- NanoTrack(@HonglinChu), C++ TensorRT deployment. MAX 250 FPS!☆28Updated last year
- YoloV10 NPU for the RK3566/68/88☆18Updated last year
- rknn-3588部署yolov5,利用线程池实现npu推理加速;Deploying YOLOv5 on RKNN-3588, utilizing a thread pool to achieve NPU inference acceleration.☆76Updated 4 months ago
- yolov11 瑞芯微 rknn 板端 C++部署,使用平台 rk3588。☆66Updated 6 months ago
- yolov8 旋转目标检测部署,瑞芯微RKNN芯片部署、地平线Horizon芯片部署、TensorRT部署☆28Updated last year
- yolov8pose 瑞芯微 rknn 板端 C++部署。☆36Updated last year
- yolov8seg 瑞芯微 rknn 板端 C++部署,使用平台 rk3588。☆28Updated last year
- RKNN-YOLOV5-BatchInference-MultiThreadingYOLOV5多张图片多线程C++推理☆21Updated last year
- ☆29Updated 3 years ago
- python版本基于rk3588的NanoTrack,每秒可达120FPS☆121Updated 3 years ago
- 基于yolov5的C++单目摄像头测距☆37Updated last year
- 启动多线程, relu激活, 3588的yolo部署, 帧率150以上.☆21Updated last year
- YoloV5 NPU for the RK3566/68/88☆112Updated last year
- ☆39Updated last year
- ffmpeg->rockchip mpp decoding->rknpu rknn->opencv opengl rendering☆46Updated 3 years ago
- gstreamer rtsp client support rockchip and jetson nx for C/C++ Python☆63Updated last year
- yolov8s在rk3588的推理部署,并使用多线程池并行npu推理加速☆43Updated 10 months ago
- yolov8obb 旋转目标检测部署rknn的C++代码☆18Updated last year
- 用OpenVINO对yolov8导出的onnx模型进行C++的推理, 任务包括图像分类, 目标识别和语义分割, 步骤包括图片前处理, 推理, NMS等☆72Updated last year
- yolov5 detector using rockchip rknn in C++☆41Updated 2 years ago
- PyTorch-->ONNX-->RKNN☆125Updated 3 years ago
- yolov8 瑞芯微 rknn 板端 C++部署。☆113Updated last year
- 海康威视工业相机在瑞芯微RK3588下调用NPU跑YOLOv5☆31Updated 2 years ago
- FastSAM 部署版本,便于移植不同平,部署简单、运行速度快。☆23Updated last year
- YOLOv5 for RK3588☆86Updated last year
- simple yolov5 rtspserver for rk3588☆57Updated 4 months ago
- 高效部署:YOLO X, V3, V4, V5, V6, V7, V8, EdgeYOLO TRT推理 ™️ ,前后处理均由CUDA核函数实现 CPP/CUDA🚀☆50Updated 2 years ago
- yolov8n 部署版本,后处理用python语言和C++语言形式进行改写,便于移植不同平台(onnx、tensorRT、RKNN、Horzion)☆157Updated last year