airockchip / RK3399Pro_npu
☆77Updated last year
Alternatives and similar repositories for RK3399Pro_npu:
Users that are interested in RK3399Pro_npu are comparing it to the libraries listed below
- ☆234Updated last year
- YOLOv5 in PyTorch > ONNX > CoreML > TFLite☆218Updated 4 months ago
- PyTorch-->ONNX-->RKNN☆118Updated 2 years ago
- YOLOv5 in PyTorch > ONNX > RKNN☆138Updated 3 years ago
- gstreamer rtsp client support rockchip and jetson nx for C/C++ Python☆58Updated last year
- ☆24Updated 10 months ago
- YOLOv5 in PyTorch > ONNX > CoreML > TFLite☆182Updated 2 years ago
- ☆37Updated 7 months ago
- ☆75Updated 7 months ago
- The rknn2 API uses the secondary encapsulation of the process, which is easy for everyone to call. It is applicable to rk356x rk3588☆45Updated 2 years ago
- 在rockchip3588上实现用ffmpeg进行推拉流,其中推拉流使用硬件加速编解码☆62Updated last year
- Examples for SophonSDK☆106Updated 2 years ago
- yolov10 瑞芯微 rknn 板端 C++部署,使用平台 rk3588。☆65Updated 7 months ago
- ☆92Updated this week
- NEW - YOLOv8 🚀 in PyTorch > ONNX > CoreML > TFLite☆170Updated 5 months ago
- python版本基于rk3588的NanoTrack,每秒可达120FPS☆102Updated 2 years ago
- ffmpeg 拉取rtsp h264流, 使用mpp解码, 目前在firefly 板子上跑通了☆224Updated 11 months ago
- ffmpeg->rockchip mpp decoding->rknpu rknn->opencv opengl rendering☆39Updated 2 years ago
- YoloV8 NPU for the RK3566/68/88☆47Updated 8 months ago
- yolov8 瑞芯微 rknn 板端 C++部署。☆101Updated last year
- yolov10 目标检测部署版本,便于移植不同平台(onnx、tensorRT、rknn、Horizon),全网部署最简单、运行速度最快的部署方式(全网首发)。☆49Updated 9 months ago
- ☆349Updated last month
- 在瑞芯微rockchip的AI芯片rv1109上,利用rknn和opencv库,修改了官方yolov3后处理部分代码Bug,交叉编译yolov3-demo示例后可成功上板部署运行。☆33Updated 3 years ago
- ☆31Updated last year
- Implementation of paper - YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors☆30Updated last year
- Samples code for world class Artificial Intelligence SoCs for computer vision applications.☆242Updated 3 months ago
- yolov8pose 部署版本,便于移植不同平台(onnx、tensorRT、rknn、Horizon)。☆40Updated last year
- 用opencv的dnn模块做yolov5目标检测,包含C++和Python两个版本的程序,优化后的☆115Updated 3 years ago
- rknn-3588部署yolov5,利用线程池实现npu推理加速;Deploying YOLOv5 on RKNN-3588, utilizing a thread pool to achieve NPU inference acceleration.☆57Updated 6 months ago
- 使用Rockchip-RGA硬件加速实现图像处理的小例子☆16Updated 2 years ago