airockchip / RK3399Pro_npuLinks
☆82Updated 2 years ago
Alternatives and similar repositories for RK3399Pro_npu
Users that are interested in RK3399Pro_npu are comparing it to the libraries listed below
Sorting:
- ☆264Updated 2 years ago
- PyTorch-->ONNX-->RKNN☆127Updated 3 years ago
- gstreamer rtsp client support rockchip and jetson nx for C/C++ Python☆63Updated last year
- Examples for SophonSDK☆107Updated 3 years ago
- YOLOv5 in PyTorch > ONNX > CoreML > TFLite☆186Updated 2 years ago
- 在rockchip3588上实现用ffmpeg进行推拉流,其中推拉流使用硬件加速编解码☆76Updated last year
- ☆125Updated 2 months ago
- YOLOv5 in PyTorch > ONNX > RKNN☆139Updated 4 years ago
- yolov10 瑞芯微 rknn 板端 C++部署,使用平台 rk3588。☆74Updated last year
- simple yolov5 rtspserver for rk3588☆59Updated 5 months ago
- ☆25Updated last year
- The Pipeline example based on AX650N/AX8850 shows the software development skills of Image Processing, NPU, Codec, and Display modules, …☆11Updated 2 months ago
- YoloV8 NPU for the RK3566/68/88☆77Updated last year
- ffmpeg->rockchip mpp decoding->rknpu rknn->opencv opengl rendering☆46Updated 3 years ago
- YOLOv5 in PyTorch > ONNX > CoreML > TFLite☆259Updated 3 weeks ago
- rknn-3588部署yolov5,利用线程池实现npu推理加速;Deploying YOLOv5 on RKNN-3588, utilizing a thread pool to achieve NPU inference acceleration.☆78Updated 5 months ago
- 在瑞芯微rockchip的AI芯片rv1109上,利用rknn和opencv库,修改了官方yolov3后处理部分代码Bug,交叉编译yolov3-demo示例后可成功上板部署运行。☆34Updated 4 years ago
- yolov8 瑞芯微 rknn 板端 C++部署。☆114Updated last year
- ffmpeg 拉取rtsp h264流, 使用mpp解码, 目前在firefly 板子上跑通了☆242Updated last year
- 学习yolo算法和rknn框架☆36Updated 4 years ago
- The rknn2 API uses the secondary encapsulation of the process, which is easy for everyone to call. It is applicable to rk356x rk3588☆46Updated 3 years ago
- 分别使用OpenCV、ONNXRuntime部署yolov5检测车牌和4个角点,包含C++和Python两个版本的程序☆73Updated 3 years ago
- ☆108Updated last year
- Convert the official paddleocr model to a deployable model on RK1126☆40Updated 3 years ago
- 启动多线程, relu激活, 3588的yolo部署, 帧率150以上.☆22Updated 2 years ago
- RK3588 Debian11环境下实现yolov5-face的推理实现,包括Python和C++实现。主要依赖RKNPU2 SDK和rknn_toolkit_lite2☆22Updated last year
- ☆17Updated 2 years ago
- python版本基于rk3588的NanoTrack,每秒可达120FPS☆123Updated 3 years ago
- 在RK3588上使用rknn runtime 推理,使用官方修改过的yolov5模型,mpp解码,rga处理图像,qt5界面显示☆24Updated 4 months ago
- 使用OpenCV部署Yolo-FastestV2,包含C++和Python两种版本的程序☆114Updated 3 years ago