airockchip / RK3399Pro_npu
☆77Updated last year
Alternatives and similar repositories for RK3399Pro_npu:
Users that are interested in RK3399Pro_npu are comparing it to the libraries listed below
- ☆242Updated last year
- YOLOv5 in PyTorch > ONNX > CoreML > TFLite☆184Updated 2 years ago
- PyTorch-->ONNX-->RKNN☆121Updated 2 years ago
- ☆24Updated last year
- NEW - YOLOv8 🚀 in PyTorch > ONNX > CoreML > TFLite☆188Updated 8 months ago
- YOLOv5 in PyTorch > ONNX > CoreML > TFLite☆228Updated 6 months ago
- YOLOv5 in PyTorch > ONNX > RKNN☆139Updated 4 years ago
- yolov10 目标检测部署版本,便于移植不同平台(onnx、tensorRT、rknn、Horizon),全网部署最简单、运行速度最快的部署方式(全网首发)。☆49Updated 11 months ago
- ☆84Updated 9 months ago
- 在瑞芯微rockchip的AI芯片rv1109上,利用rknn和opencv库,修改了官方yolov3后处理部分代码Bug,交叉编译yolov3-demo示例后可成功上板部署运行。☆34Updated 3 years ago
- yolov10 瑞芯微 rknn 板端 C++部署,使用平台 rk3588。☆69Updated 9 months ago
- gstreamer rtsp client support rockchip and jetson nx for C/C++ Python☆59Updated last year
- The rknn2 API uses the secondary encapsulation of the process, which is easy for everyone to call. It is applicable to rk356x rk3588☆45Updated 2 years ago
- ffmpeg->rockchip mpp decoding->rknpu rknn->opencv opengl rendering☆40Updated 2 years ago
- yolov8 瑞芯微 rknn 板端 C++部署。☆106Updated last year
- ffmpeg 拉取rtsp h264流, 使用mpp解码, 目前在firefly 板子上跑通了☆225Updated last year
- Examples for SophonSDK☆105Updated 2 years ago
- ☆376Updated this week
- 在rockchip3588上实现用ffmpeg进行推拉流,其中推拉流使用硬件加速编解码☆67Updated last year
- simple yolov5 rtspserver for rk3588☆42Updated last month
- Track vehicles and persons on rk3588 / rk3399pro.☆385Updated 2 years ago
- ☆105Updated this week
- ☆44Updated 3 years ago
- ☆41Updated 10 months ago
- yolov8pose 瑞芯微 rknn 板端 C++部署。☆34Updated last year
- ☆64Updated 3 months ago
- Convert the official paddleocr model to a deployable model on RK1126☆37Updated 2 years ago
- python版本基于rk3588的NanoTrack,每秒可达120FPS☆109Updated 2 years ago
- 在海思Hisilicon的Hi3516dv300芯片上,利用nnie和opencv库,简洁了官方yolov3用例中各种复杂的嵌套调用/复杂编译,提供了交叉编译后可成功上板部署运行的demo。☆45Updated 3 years ago
- Tutorial includes rknn-envirment building, updating, model transfer, end-to-end YOLO3/self define model training &use, etc.☆36Updated 4 years ago