talwagner / efficient_kdeLinks
Efficient LSH-based kernel density estimation
☆28Updated 6 years ago
Alternatives and similar repositories for efficient_kde
Users that are interested in efficient_kde are comparing it to the libraries listed below
Sorting:
- Source code for the ICML2019 paper "Subspace Robust Wasserstein Distances"☆29Updated 6 years ago
- Keras implementation of Deep Wasserstein Embeddings☆48Updated 7 years ago
- Coresets☆38Updated 3 years ago
- Learning Generative Models across Incomparable Spaces (ICML 2019)☆27Updated 5 years ago
- Code for Sliced Gromov-Wasserstein☆69Updated 6 years ago
- Gabriel Peyré, Marco Cuturi, Justin Solomon, Gromov-Wasserstein Averaging of Kernel and Distance Matrices, Proc. of ICML 2016.☆75Updated 9 years ago
- Implementation of Graph Neural Tangent Kernel (NeurIPS 2019)☆105Updated 6 years ago
- [ICML 2020] Differentiating through the Fréchet Mean (https://arxiv.org/abs/2003.00335).☆59Updated 4 years ago
- Stochastic algorithms for computing Regularized Optimal Transport☆58Updated 7 years ago
- The implementation code for our paper Wasserstein Embedding for Graph Learning (ICLR 2021).☆35Updated 5 years ago
- Wasserstein regularization for sparse multi-task regression☆15Updated 5 years ago
- EigenPro2 iteration in Tensorflow (Keras)☆23Updated 6 years ago
- Python implementation of smooth optimal transport.☆61Updated 4 years ago
- Non-Parametric Calibration for Classification (AISTATS 2020)☆19Updated 4 years ago
- Explaining a black-box using Deep Variational Information Bottleneck Approach☆46Updated 3 years ago
- Mixed Membership Stochastic Blockmodel Implementation with 3 Inference Schemes☆24Updated 10 years ago
- ☆53Updated 7 years ago
- A Python implementation of Monge optimal transportation☆49Updated 2 years ago
- ☆18Updated 7 years ago
- Reliable Uncertainty Estimates in Deep Neural Networks using Noise Contrastive Priors☆62Updated 5 years ago
- Implementation of the Neural Clustering Process algorithm in Pytorch☆32Updated 5 years ago
- Supporting code for "Parallel Streaming Wasserstein Barycenters"☆10Updated 8 years ago
- ☆21Updated 2 years ago
- Morgan A. Schmitz., Matthieu Heitz, Nicolas Bonneel, Fred Ngole, David Coeurjolly, Marco Cuturi, Gabriel Peyré, and Jean-Luc Starck. "Was…☆20Updated 6 years ago
- Sample code for running deterministic variational inference to train Bayesian neural networks☆102Updated 7 years ago
- MMD, Hausdorff and Sinkhorn divergences scaled up to 1,000,000 samples.☆58Updated 6 years ago
- a python implementation of various versions of the information bottleneck, including automated parameter searching☆132Updated 5 years ago
- Implementation of the Sliced Wasserstein Autoencoders☆92Updated 7 years ago
- Implementation of the Gromov-Wasserstein distance to the setting of Unbalanced Optimal Transport☆45Updated 2 years ago
- Deep convolutional gaussian processes.☆82Updated 6 years ago