suolyer / PyTorch_BERT_SimpleLexicon_NER
复现论文《Simplify the Usage of Lexicon in Chinese NER》
☆42Updated 3 years ago
Alternatives and similar repositories for PyTorch_BERT_SimpleLexicon_NER:
Users that are interested in PyTorch_BERT_SimpleLexicon_NER are comparing it to the libraries listed below
- TPlinker for NER 中文/英文命名实体识别☆123Updated 3 years ago
- NLP关系抽取:序列标注、层叠式指针网络、Multi-head Selection、Deep Biaffine Attention☆100Updated 3 years ago
- Tplinker注释,中文数据集适配版本☆59Updated 4 years ago
- 百度2021年语言与智能技术竞赛多形态信息抽取赛道关系抽取部分torch版baseline☆52Updated 3 years ago
- code for ACL2020:《FLAT: Chinese NER Using Flat-Lattice Transformer》 我注释&修改&添加了部分源码,使得大家更容易复现这个代码。☆56Updated 4 years ago
- 支持百度竞赛数据的中文事件抽取,支持ace2005数据的英文事件抽取,本人将苏神的三元组抽取算法中的DGCNN改成了事件抽取任务,并将karas改成了本人习惯使用的pytorch,在数据加载处考虑了各种语言的扩展☆48Updated 4 years ago
- lic2020关系抽取比赛,使用Pytorch实现苏神的模型。☆101Updated 4 years ago
- 基于bert_mrc的中文命名实体识别☆43Updated 2 years ago
- GPLinker_pytorch☆81Updated 2 years ago
- NER任务SOTA模型BERT_MRC☆60Updated last year
- 迭代膨胀卷积命名实体抽取☆45Updated 5 years ago
- ccks2020 NER competitions☆117Updated 4 years ago
- 嵌套命名实体识别 Nested NER☆19Updated 3 years ago
- pytorch Efficient GlobalPointer☆53Updated 2 years ago
- ☆18Updated 3 years ago
- 论文复现《Named Entity Recognition as Dependency Parsing》☆129Updated 3 years ago
- 基于Bert模型的关系抽取和实体识别、Entity Extraction and Relation Extract using Bert☆11Updated 5 years ago
- 百度2020语言与智能技术竞赛:事件抽取赛道方案代码☆53Updated 4 years ago
- Chinese NER using BiLSTM/BERT + CRF☆65Updated 3 years ago
- 本项目采用PyTorch和transformers模块实现英语序列标注,其中对BERT进行微调。☆19Updated 4 years ago
- 使用多头的思想来进行命名实体识别☆33Updated 3 years ago
- Source code for ACL 2021 finding paper: CasEE: A Joint Learning Framework with Cascade Decoding for Overlapping Event Extraction.☆80Updated 3 years ago
- 2020语言与智能技术竞赛:关系抽取任务☆65Updated 4 years ago
- 本项目是NLP领域一些任务的基准模型实现,包括文本分类、命名实体识别、实体关系抽取、NL2SQL、CKBQA以及BERT的各种下游任务应用。☆47Updated 4 years ago
- CMeEE/CBLUE/NER实体识别☆127Updated 2 years ago
- https://tianchi.aliyun.com/dataset/dataDetail?dataId=95414☆30Updated 3 years ago
- 本NER项目包含多个中文数据集,模型采用BiLSTM+CRF、BERT+Softmax、BERT+Cascade、BERT+WOL等,最后用TFServing进行模型部署,线上推理和线下推理。☆80Updated 3 years ago
- GlobalPointer的优化版/NER实体识别☆116Updated 3 years ago
- 面向金融领域的篇章级事件抽取和事件因果关系抽取 第六名 方案及代码☆61Updated 3 years ago
- 通用kbqa,训练数据来源于ccks2018和2019,图谱数据爬取于百度百科☆24Updated 4 years ago