KwangKa / SIMCSE_unsupLinks
中文无监督SimCSE Pytorch实现
☆134Updated 4 years ago
Alternatives and similar repositories for SIMCSE_unsup
Users that are interested in SIMCSE_unsup are comparing it to the libraries listed below
Sorting:
- 句子匹配模型,包括无监督的SimCSE、ESimCSE、PromptBERT,和有监督的SBERT、CoSENT。☆99Updated 2 years ago
- ☆87Updated 3 years ago
- NLP句子编码、句子embedding、 语义相似度:BERT_avg、BERT_whitening、SBERT、SmiCSE☆176Updated 3 years ago
- ☆278Updated 3 years ago
- 中文数据集下SimCSE+ESimCSE的实现☆192Updated 3 years ago
- 基于prompt的中文文本分类。☆55Updated 2 years ago
- Pattern-Exploiting Training在中文上的简单实验☆171Updated 4 years ago
- chinese version of longformer☆113Updated 4 years ago
- CoSENT、STS、SentenceBERT☆169Updated 5 months ago
- 基于SpanBert的中文指代消解,pytorch实现☆98Updated 2 years ago
- NER任务SOTA模型BERT_MRC☆61Updated last year
- experiments of some semantic matching models and comparison of experimental results.☆162Updated 2 years ago
- 论文复现《Named Entity Recognition as Dependency Parsing》☆130Updated 4 years ago
- ☆32Updated 4 years ago
- 苏神SPACE pytorch版本复现☆42Updated 3 years ago
- ☆136Updated 3 years ago
- SimCSE有监督与无监督实验复现☆148Updated last year
- SimCSE在中文上的复现,有监督+无监督☆277Updated 4 months ago
- 基于GlobalPointer的实体/关系/事件抽取☆147Updated 3 years ago
- TPlinker for NER 中文/英文命名实体识别☆126Updated 3 years ago
- Label Mask for Multi-label Classification☆56Updated 4 years ago
- 全局指针统一处理嵌套与非嵌套NER☆254Updated 4 years ago
- Use deep models including BiLSTM, ABCNN, ESIM, RE2, BERT, etc. and evaluate on 5 Chinese NLP datasets: LCQMC, BQ Corpus, ChineseSTS, OCN…☆76Updated 3 years ago
- Knowledge Graph☆174Updated 2 years ago
- pytorch Efficient GlobalPointer☆56Updated 3 years ago
- SinglepassTextCluster, an TextCluster tools based on Singlepass cluster algorithm that use tfidf vector and doc2vec,which can be used for…☆63Updated 3 years ago
- Data Augmentation with a Generation Approach for Low-resource Tagging Tasks☆80Updated 4 years ago
- NLP关系抽取:序列标注、层叠式指针网络、Multi-head Selection、Deep Biaffine Attention☆101Updated 4 years ago
- NEZHA: Neural Contextualized Representation for Chinese Language Understanding☆262Updated 3 years ago
- NLP实验:新词挖掘+预训练模型继续Pre-training☆47Updated last year