KwangKa / SIMCSE_unsupLinks
中文无监督SimCSE Pytorch实现
☆135Updated 4 years ago
Alternatives and similar repositories for SIMCSE_unsup
Users that are interested in SIMCSE_unsup are comparing it to the libraries listed below
Sorting:
- 句子匹配模型,包括无监督的SimCSE、ESimCSE、PromptBERT,和有监督的SBERT、CoSENT。☆100Updated 3 years ago
- ☆88Updated 4 years ago
- 中文数据集下SimCSE+ESimCSE的实现☆193Updated 3 years ago
- Pattern-Exploiting Training在中文上的简单实验☆174Updated 5 years ago
- ☆279Updated 3 years ago
- NLP句子编码、句子embedding、语义相似度:BERT_avg、BERT_whitening、SBERT、SmiCSE☆179Updated 3 years ago
- 基于prompt的中文文本分类。☆55Updated 2 years ago
- 基于SpanBert的中文指代消解,pytorch实现☆102Updated 2 years ago
- chinese version of longformer☆116Updated 5 years ago
- CoSENT、STS、SentenceBERT☆171Updated 9 months ago
- experiments of some semantic matching models and comparison of experimental results.☆163Updated last month
- 论文复现《Named Entity Recognition as Dependency Parsing》☆131Updated 4 years ago
- ☆33Updated 4 years ago
- SimCSE有监督与无监督实验复现☆152Updated last year
- 苏神SPACE pytorch版本复现☆42Updated 4 years ago
- ☆136Updated 4 years ago
- Label Mask for Multi-label Classification☆58Updated 4 years ago
- SimCSE在中文上的复现,有监督+无监督☆281Updated 9 months ago
- 中文bigbird预训练模型☆96Updated 3 years ago
- Data Augmentation with a Generation Approach for Low-resource Tagging Tasks☆79Updated 4 years ago
- Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021☆239Updated 3 years ago
- The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"☆230Updated 3 years ago
- 百度2021年语言与智能技术竞赛机器阅读理解torch版baseline☆53Updated 4 years ago
- 全局指针统一处理嵌套与非嵌套NER☆257Updated 4 years ago
- 基于GlobalPointer的实体/关系/事件抽取☆150Updated 3 years ago
- The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction".☆114Updated 2 years ago
- pytorch版unilm模型☆27Updated 4 years ago
- 从头训练MASK BERT☆139Updated 2 years ago
- Knowledge Graph☆176Updated 3 years ago
- Use deep models including BiLSTM, ABCNN, ESIM, RE2, BERT, etc. and evaluate on 5 Chinese NLP datasets: LCQMC, BQ Corpus, ChineseSTS, OCN…☆77Updated 3 years ago