yangjianxin1 / LEBERT-NER-Chinese
基于词汇信息融合的中文NER模型
☆164Updated 2 years ago
Alternatives and similar repositories for LEBERT-NER-Chinese:
Users that are interested in LEBERT-NER-Chinese are comparing it to the libraries listed below
- 利用指针网络进行信息抽取,包含命名实体识别、关系抽取、事件抽取。☆123Updated last year
- CMeIE/CBLUE/CHIP/实体关系抽取/SPO抽取☆223Updated 2 years ago
- TPlinker for NER 中文/英文命名实体识别☆122Updated 3 years ago
- 基于GlobalPointer的实体/关系/事件抽取☆146Updated 2 years ago
- GPLinker_pytorch☆80Updated 2 years ago
- 全局指针统一处理嵌套与非嵌套NER的Pytorch实现☆383Updated last year
- NLP关系抽取:序列标注、层叠式指针网络、Multi-head Selection、Deep Biaffine Attention☆100Updated 3 years ago
- CMeEE/CBLUE/NER实体识别☆125Updated 2 years ago
- 全局指针统一处理嵌套与非嵌套NER☆254Updated 3 years ago
- [Unofficial] Predict code for AAAI 2022 paper: Unified Named Entity Recognition as Word-Word Relation Classification☆52Updated 2 years ago
- 本人项目进行中搜集的数据集,包含原始数据和经过处理后的数据,项目持续更新。☆112Updated 4 years ago
- OneRel在中文关系抽取中的使用☆118Updated last year
- 基于Pytorch的命名实体识别框架,支持LSTM+CRF、Bert+CRF、RoBerta+CRF等框架☆82Updated last year
- Implemention of NER model on chinese dataset.☆70Updated last year
- GlobalPointer的优化版/NER实体识别☆114Updated 3 years ago
- Tplinker注释,中文数据集适配版本☆59Updated 4 years ago
- experiments of some semantic matching models and comparison of experimental results.☆161Updated last year
- Reimplement CasRel model in PyTorch.使用PyTorch对吉林大学CasRel模型进行复现,并在百度关系抽取数据集上训练测试。☆190Updated 2 years ago
- 基于pytorch的百度UIE命名实体识别。☆57Updated 2 years ago
- Code for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling Using BERT Adapter"☆341Updated 3 years ago
- Knowledge Graph☆170Updated 2 years ago
- ccks2020 NER competitions☆116Updated 4 years ago
- 基于bert_mrc的中文命名实体识别☆43Updated 2 years ago
- 使用torch整合两种经典的指针NER抽取范式,分别是SpanBert和苏神的GlobalPointer,简单 加了些tricks,配置后一键运行☆131Updated 8 months ago
- NLP句子编码、句子embedding、语义相似度:BERT_avg、BERT_whitening、SBERT、SmiCSE☆175Updated 3 years ago
- 中文NER的那些事儿☆315Updated last year
- 论文复现《Named Entity Recognition as Dependency Parsing》☆129Updated 3 years ago
- 基于pytorch + bert的多标签文本分类(multi label text classification)☆101Updated last year
- 实体关系抽取,使用了百度比赛的数据集。使用pytorch实现MultiHeadJointEntityRelationExtraction,包含Bert、Albert、gru的使用,并且添加了对抗训练。最后使用Flask和Neo4j图数据库对模型进行了部署☆120Updated last year
- ☆277Updated 2 years ago