rglkt / yolov5-with-more-backboneLinks
yolov5 with more backbone
☆19Updated 3 years ago
Alternatives and similar repositories for yolov5-with-more-backbone
Users that are interested in yolov5-with-more-backbone are comparing it to the libraries listed below
Sorting:
- 🚀🚀🚀YOLOC is Combining different modules to build an different Object detection model.Including YOLOv3、YOLOv4、Scaled_YOLOv4、YOLOv5、YOLO…☆72Updated 2 years ago
- 可以训练yolov5(v6.0)、yolox、小型网络,添加注意力机制☆66Updated 3 years ago
- ☆93Updated 4 years ago
- ☆72Updated last year
- Official YOLOv7训练自己的数据集并实现端到端的TensorRT模型加速推断☆47Updated 3 years ago
- 基于yoloV7-pose添加任意个关键点和检测目标多分类☆113Updated 2 years ago
- 🚀 Simple and efficient use for Ultralytics yolov5🚀☆32Updated 2 years ago
- ☆68Updated 4 years ago
- YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite☆68Updated 3 years ago
- yolov5部署☆18Updated 3 years ago
- 分别使用OpenCV、ONNXRuntime部署yolov5旋转目标检测,包含C++和Python两个版本的程序☆61Updated 3 years ago
- 使用opencv部署DBNet文字检测,包含C++和Python两种版本的实现☆33Updated 4 years ago
- rotated bbox detection. inspired by https://github.com/hukaixuan19970627/YOLOv5_DOTA_OBB, thanks hukaixuan19970627.☆90Updated 2 years ago
- yolov5+doublehead + MultiLabel+detection☆24Updated 3 years ago
- 手把手教你OpenVINO下部署NanoDet模型,intel i7-7700HQ CPU实测6ms一帧☆36Updated 4 years ago
- A quick TensorRT deoloyment solution for YOLOv8.☆39Updated last year
- 将YOLOv5-Lite代码中的head更换为YOLOX head☆22Updated 3 years ago
- CoordAttention_YOLOX(基于CoordAttention坐标注意力机制的改进版YOLOX目标检测平台)☆49Updated 2 years ago
- Pytorch reimplement of PPYOLOv2, PPYOLO, YOLOv3☆14Updated 3 years ago
- 使用ONNXRuntime部署阿里达摩院开源DAMO-YOLO目标检测,一共包含27个onnx模型,依然是包含了C++和Python两个版本的程序☆33Updated 2 years ago
- 无人机视角、多模态、模型剪枝、国产AI芯片部署☆41Updated 3 years ago
- yolov5 knowledge distilling☆26Updated 2 years ago
- 基于YoloV5的一些魔改及相关部署方案☆63Updated 3 years ago
- 基于NanoDet项目进行小裁剪,专门用来实现PyTorch 版本的代码,下载直接能使用,支持图片、视频文件、摄像头实时目标检测。☆150Updated 4 years ago
- yolov8 tensorrt 加速☆53Updated 2 years ago
- 比ResNet更强的RepVGG,结构重参数化,推理部署一路3x3卷积到底,详细的代码讲解,欢迎star☆46Updated 4 years ago
- ppyolo in pytorch. 44.8% box mAP.☆109Updated 3 years ago
- ☆23Updated 2 years ago
- 🚀Simple and efficient use for Ultralytics yolov8🚀☆171Updated last year
- 布匹缺陷识别练习赛☆46Updated 4 years ago