real-time-machine-learning / 4-rabbitmqLinks
利用RabbitMQ消息队列架设实时机器学习服务
☆32Updated 6 years ago
Alternatives and similar repositories for 4-rabbitmq
Users that are interested in 4-rabbitmq are comparing it to the libraries listed below
Sorting:
- Docker使用介绍☆13Updated 9 years ago
- 利用Elasticsearch, LogStash, Kibana集群实现数据可视化☆14Updated 9 years ago
- 利用Scikit Learn对秒级股票数据进行建模预测☆54Updated 7 years ago
- Analysis in Niuwa Credit Risk☆31Updated 9 years ago
- 1st Place Solution for TianChi-Industry4.0-Competition☆172Updated 8 years ago
- ☆51Updated 9 years ago
- News recommendation system based on spark.☆49Updated 9 years ago
- logistic regression model by ftrl based on ps-lite(parameter server)☆34Updated 9 years ago
- 科赛 携程出行产品未来14个月销量预测 第2名☆62Updated 8 years ago
- 自己总结的机器学习的算法与相应的程序☆20Updated 7 years ago
- A minimal display advertising system.☆47Updated 9 years ago
- 🎼天池阿里音乐流行趋势预测大赛,项目中涵盖了从初赛到复赛的全部核心代码。复赛的聚合数据可以在百度网盘下载,更详细的思路介绍欢迎访问我的博客。☆152Updated 7 years ago
- ☆27Updated 8 years ago
- xgboost在线预测☆30Updated 8 years ago
- AutoML☆38Updated 6 years ago
- 主要解决ctr预估工程中的特征选择,特征编号(特征离散),单特征auc和logloss这3个问题.☆20Updated 8 years ago
- 数据挖掘竞赛(Kaggle,Data Castle,Analytics Vidhya,DrivenData)入门实践☆82Updated 8 years ago
- Deep Learning Pipelines for Apache Spark☆58Updated 8 years ago
- 大数据竞赛——资金流入流出预测☆13Updated 10 years ago
- 该项目是关于机器学习经典书籍《Pattern Recognition and Machine Learning》的学习笔记,我用python实现了书中的一些实例,希望帮助感兴趣的人更好的理解☆77Updated 8 years ago
- 2016CCF-sougou-code&PPT☆56Updated 9 years ago
- 数据挖掘,参加Kaggle的一个预测广告点击率的竞赛☆28Updated 10 years ago
- 记录自己深度学习之路的点滴☆76Updated 6 years ago
- Using gbdt+lr in recommend system and comparing the auc of lr, gbdt, gbdt+lr.☆24Updated 8 years ago
- word2vec源码阅读,标记了中文注释☆60Updated 9 years ago
- this is my presentaion area .个人演讲稿展示区,主要展示一些平时的个人演讲稿或者心得之类的,☆57Updated 5 years ago
- In online advertising, click-through rate (CTR) is a very important metric for evaluating ad performance. As a result, click prediction s…☆31Updated 3 months ago
- CCF_大数据精准营销中搜狗用户画像挖掘☆17Updated 8 years ago
- 《统计学习方法》的读书笔记,重现了大部分的课后题,仅供参考。☆68Updated 8 years ago
- 基于sklearn,强化Pipeline和FeatureUnion两个类。对FeatureUnion类,使其支持部分数据处理;对两者,增加特征转换行为记录的功能。☆29Updated 9 years ago