weishengying / tiny-flash-attentionLinks
使用 cutlass 实现 flash-attention 精简版,具有教学意义
☆46Updated last year
Alternatives and similar repositories for tiny-flash-attention
Users that are interested in tiny-flash-attention are comparing it to the libraries listed below
Sorting:
- ☆15Updated last year
- 使用 cutlass 仓库在 ada 架构上实现 fp8 的 flash attention☆75Updated last year
- ☆103Updated 3 months ago
- Performance of the C++ interface of flash attention and flash attention v2 in large language model (LLM) inference scenarios.☆40Updated 6 months ago
- ☆41Updated last year
- Benchmark code for the "Online normalizer calculation for softmax" paper☆98Updated 7 years ago
- ☆150Updated 8 months ago
- 使用 CUDA C++ 实现的 llama 模型推理框架☆61Updated 10 months ago
- ☆55Updated last month
- ☆98Updated last year
- ⚡️Write HGEMM from scratch using Tensor Cores with WMMA, MMA and CuTe API, Achieve Peak⚡️ Performance.☆109Updated 4 months ago
- ☆141Updated last year
- A standalone GEMM kernel for fp16 activation and quantized weight, extracted from FasterTransformer☆94Updated 2 weeks ago
- Multiple GEMM operators are constructed with cutlass to support LLM inference.☆19Updated last month
- Several optimization methods of half-precision general matrix vector multiplication (HGEMV) using CUDA core.☆64Updated last year
- Examples of CUDA implementations by Cutlass CuTe☆229Updated 2 months ago
- ☆37Updated 11 months ago
- ☆32Updated 7 months ago
- ☆132Updated 9 months ago
- ☆108Updated 5 months ago
- ☆138Updated last year
- ☆13Updated 6 months ago
- Optimize softmax in triton in many cases☆21Updated last year
- Implement Flash Attention using Cute.☆95Updated 8 months ago
- We invite you to visit and follow our new repository at https://github.com/microsoft/TileFusion. TiledCUDA is a highly efficient kernel …☆185Updated 7 months ago
- A practical way of learning Swizzle☆25Updated 7 months ago
- Standalone Flash Attention v2 kernel without libtorch dependency☆110Updated last year
- NVSHMEM‑Tutorial: Build a DeepEP‑like GPU Buffer☆60Updated last week
- 🤖FFPA: Extend FlashAttention-2 with Split-D, ~O(1) SRAM complexity for large headdim, 1.8x~3x↑🎉 vs SDPA EA.☆212Updated last month
- ☆59Updated 9 months ago