lezhang7 / FudanNLP_Begginer
这是复旦NLP实验室五个任务的代码仓库,每个代码以ipynb形式展开,可以通过colab在线运行代码
☆21Updated 4 years ago
Related projects ⓘ
Alternatives and complementary repositories for FudanNLP_Begginer
- Exercises of Natural Language Process.☆31Updated 2 years ago
- 复旦大学邱锡鹏老师推荐的nlp-beginner项目的实现代码☆122Updated 4 years ago
- 复旦大学nlp实验室入门小实验nlp-beginner☆22Updated 2 years ago
- code for nlp beginner, including Sentiment Analysis, NER, NLI and Language Model.☆54Updated 5 years ago
- NLP常见任务实现(pytorch版)☆118Updated 4 years ago
- pytorch实现seq2seq机器翻译算法,附详细注释☆22Updated 3 years ago
- NLP实战项目☆85Updated last year
- MLNLP社区翻译的NLP入门课程。☆174Updated last year
- all the notes, ppts and homework for CS224n☆74Updated 6 months ago
- SIGIR 2022: Contrastive Learning with Hard Negative Entities for Entity Set Expansion☆31Updated last year
- 🗺️ 一个自然语言处理的学习路线图☆104Updated last year
- ☆17Updated 4 years ago
- Using Bert/Roberta + LSTM/GRU/BiLSTM/TextCNN to do the sentiment analysis on the imdb datasets.☆108Updated last year
- A PyTorch implementation of a BiLSTM \ BERT \ Roberta (+ BiLSTM + CRF) model for Chinese Word Segmentation (中文分词) .☆203Updated 2 years ago
- ACE2005中文数据集处理(中文信息信息抽取任务)☆20Updated 3 years ago
- 基于pytorch + bert的多标签文本分类(multi label text classification)☆91Updated last year
- This is a repository for a few projects built in torch.☆41Updated 2 years ago
- 神经网络各种模型PyTorch实现☆38Updated last year
- CS224n Reading Notes in Chinese 中文阅读笔记☆498Updated 4 months ago
- ☆61Updated last year
- CS224n Assignment & Readings☆242Updated 6 months ago
- seminar for undergraduates☆15Updated 3 years ago
- The code and resource of "Facilitating Fine-grained Detection of Chinese Toxic Language: Hierarchical Taxonomy, Resources, and Benchmark"…☆52Updated 3 weeks ago
- 复旦大学自然语言处理组发布的自然语言入门练习项目的代码与报告☆14Updated 2 years ago
- Stanford Winter 2021☆86Updated 3 years ago
- 给研一同学的NLP入门指南☆57Updated 5 months ago
- ACL'2022: Prompt for Extraction? PAIE: Prompting Argument Interaction for Event Argument Extraction☆126Updated last year
- 基于Hmm模型和Viterbi算法实现中文分词及词性标注,使用最大概率算法进行优化。人民日报语料:分词(F1:96.189%);词性标注(F1:97.934%)☆24Updated last year
- 中文词义消歧项目(Chinese WSD),基于LSTM + ATTENTION模型架构,Pytorch实现。代码简单,上手容易。☆18Updated 2 years ago
- Recruitment instructions of Professor Li Zhenghua.☆26Updated 2 months ago