chenlian-zhou / nlp
☆19Updated 4 years ago
Alternatives and similar repositories for nlp
Users that are interested in nlp are comparing it to the libraries listed below
Sorting:
- SimCSE中文语义相似度对比学习模型☆85Updated 3 years ago
- NLP常见任务实现(pytorch版)☆122Updated 4 years ago
- Exercises of Natural Language Process.☆33Updated 3 years ago
- Emotion-Cause Pair Extraction, PyTorch Implementations. 情感-原因对抽取,基于PyTorch实现☆31Updated last year
- 继续预训练中文bert☆30Updated 3 years ago
- 苏神SPACE pytorch版本复现☆42Updated 3 years ago
- 基于pytorch + bert的多标签文本分类(multi label text classification)☆103Updated last year
- smp ewect code☆77Updated 4 years ago
- 基于SpanBert的中文指代消解,pytorch实现☆97Updated 2 years ago
- 百度2021年语言与智能技术竞赛多形态信息抽取赛道事件抽取部分torch版baseline☆76Updated 4 years ago
- 百度2021年语言与智能技术竞赛多形态信息抽取赛道关系抽取部分torch版baseline☆52Updated 4 years ago
- 该仓库主要记录 NLP 算法工程师相关的顶会论文研读笔记 【信息抽取篇】☆28Updated 2 years ago
- RoBERTa + BiLSTM + CRF for Chinese NER Task☆32Updated 3 years ago
- 多模型中文cnews新闻文本分类☆55Updated 5 years ago
- a sample pytorch Implementation of ACL 2021 research paper "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".☆38Updated last year
- 法研杯2021类案检索赛道三等奖方案☆50Updated 3 years ago
- CMeEE/CBLUE/NER实体识别☆129Updated 3 years ago
- ☆58Updated 3 years ago
- Enhanced Multi-Channel Graph Convolutional Network for Aspect Sentiment Triplet Extraction☆53Updated 2 years ago
- 句子匹配模型,包括无监督的SimCSE、ESimCSE、PromptBERT,和有监督的SBERT、CoSENT。☆99Updated 2 years ago
- 基于prompt的中文文本分类。☆55Updated 2 years ago
- 根据维基中文语料库预训练 GloVe 中文词向量;Pre-train GloVe word-embedding From Chinese Wiki corpus☆73Updated last year
- Pytorch进行长文本分类。这里用到的网络有:FastText、TextCNN、TextRNN、TextRCNN、Transformer☆48Updated 4 years ago
- Summary and comparison of Chinese classification models☆34Updated 2 years ago
- 中文数据集下SimCSE+ESimCSE的实现☆192Updated 2 years ago
- NER任务SOTA模型BERT_MRC☆61Updated last year
- 基于Pytorch+BERT+CRF的NLP序列标注模型,目前包括分词,词性标注,命名实体识别等☆60Updated 2 years ago
- ☆278Updated 3 years ago
- SimCSE有监督与无监督实验复现☆149Updated last year
- 基于bert_mrc的中文命名实体识别☆44Updated 3 years ago