HIT-SCIR / plm-nlp-codeLinks
☆640Updated 5 months ago
Alternatives and similar repositories for plm-nlp-code
Users that are interested in plm-nlp-code are comparing it to the libraries listed below
Sorting:
- Bert源码阅读与讲解(Pytorch版本)-以BERT文本分类代码为例子☆653Updated 3 years ago
- An implementation of the BERT model and its related downstream tasks based on the PyTorch framework. @月来客栈☆606Updated 3 weeks ago
- 超轻量级bert的pytorch版本,大量中文注释,容易修改结构,持续更新☆415Updated 3 years ago
- 天池中药说明书实体识别挑战冠军方案;中文命名实体识别;NER; BERT-CRF & BERT-SPAN & BERT-MRC;Pytorch☆955Updated 4 years ago
- 收录NLP竞赛策略实现、各任务baseline、相关竞赛经验贴(当前赛事、往期赛事、训练赛)、NLP会议时间、常用自媒体、GPU推荐等,持续更新中☆2,227Updated last year
- 记录本人整理的一些数据集☆1,066Updated 3 years ago
- FewCLUE 小样本学习测评基准,中文版☆512Updated 2 years ago
- SimCSE在中 文任务上的简单实验☆605Updated 2 years ago
- Archive for AINLP History Article☆189Updated 3 years ago
- A PyTorch implementation of a BiLSTM\BERT\Roberta(+CRF) model for Named Entity Recognition.☆505Updated 4 years ago
- 命名体识别(NER)综述-论文-模型-代码(BiLSTM-CRF/BERT-CRF)-竞赛资源总结-随时更新☆474Updated 5 years ago
- 机器阅读理解 冠军/亚军代码及中文预训练MRC模型☆745Updated 2 years ago
- NLP 领域常见任务的实现,包括新词发现、以及基于pytorch的词向量、中文文本分类、实体识别、摘要文本生成、句子相似度判断、三元组抽取、预训练模型等。☆533Updated 2 years ago
- Revisiting Pre-trained Models for Chinese Natural Language Processing (MacBERT)☆682Updated last month
- An implement of the paper of EDA for Chinese corpus.中文语料的EDA数据增强工具。NLP数据增强。论文阅读笔记。☆1,378Updated 3 years ago
- 专门为自然语言处理(NLP)面试准备的学习笔记与资料☆352Updated 4 years ago
- 🗺️ 一个自然语言处理的学习路线图☆112Updated 2 years ago
- 预训练语言模型综述☆552Updated 5 years ago
- 中文自然语言推理与语义相似度数据集☆362Updated 3 years ago
- Some Cool NLP and CV Repositories and Solutions (收集NLP中常见任务的开源解决方案、数据集、工具、学习资料等)☆162Updated 4 years ago
- Embedding, NMT, Text_Classification, Text_Generation, NER etc.☆567Updated 2 years ago
- Chinese-Text-Classification Project including bert-classification, textCNN and so on.☆161Updated 3 years ago
- 全局指针统一处理嵌套与非嵌套NER的Pytorch实现☆399Updated 2 years ago
- 中文命名实体识别。包含目前最新的中文命名实体识别论文、中文实体识别相关工具、数据集,以及中文预训练模型、词向量、实体识别综述等。☆730Updated last month
- 北京航空航天大学大数据高精尖中心自然语言处理研究团队对信息抽取领域的调研。包括实体识别,关系抽取,属性抽取等子任务,每类子任务分别对学术界和工业界进行调研。☆471Updated 3 years ago
- code for ACL 2020 paper: FLAT: Chinese NER Using Flat-Lattice Transformer☆1,009Updated 3 years ago
- Unified Structure Generation for Universal Information Extraction☆936Updated 3 years ago
- a bert for retrieval and generation☆860Updated 4 years ago
- DeepIE: Deep Learning for Information Extraction☆1,947Updated 2 years ago
- ☆279Updated 3 years ago