hspuppy / hugbertLinks
Hugging BERT together. Misc scripts for Huggingface transformers.
☆73Updated 2 years ago
Alternatives and similar repositories for hugbert
Users that are interested in hugbert are comparing it to the libraries listed below
Sorting:
- 全局指针统一处理嵌套与非嵌套NER☆258Updated 4 years ago
- Knowledge Graph☆176Updated 3 years ago
- Pattern-Exploiting Training在中文上的简单实验☆174Updated 5 years ago
- NEZHA: Neural Contextualized Representation for Chinese Language Understanding☆261Updated 4 years ago
- ☆88Updated 4 years ago
- 论文复现《Named Entity Recognition as Dependency Parsing》☆131Updated 4 years ago
- ☆136Updated 4 years ago
- 句子匹配模型,包括无监督的SimCSE、ESimCSE、PromptBERT,和有监督的SBERT、CoSENT。☆100Updated 3 years ago
- 基于SpanBert的中文指代消解,pytorch实现☆102Updated 2 years ago
- NLP句子编码、句子embedding、语义相似度:BERT_avg、BERT_whitening、SBERT、SmiCSE☆179Updated 3 years ago
- GlobalPointer的优化版/NER实体识别☆123Updated 3 years ago
- CoSENT、STS、SentenceBERT☆172Updated 10 months ago
- lic2020关系抽取比赛,使用Pytorch实现苏神的模型。☆103Updated 5 years ago
- 中文数据集下SimCSE+ESimCSE的实现☆193Updated 3 years ago
- 基于GlobalPointer的实体/关系/事件抽取☆150Updated 3 years ago
- 中文无监督SimCSE Pytorch实现☆135Updated 4 years ago
- chinese version of longformer☆116Updated 5 years ago
- 中文NLP数据集☆158Updated 6 years ago
- ☆33Updated 4 years ago
- experiments of some semantic matching models and comparison of experimental results.☆163Updated last month
- TPlinker for NER 中文/英文命名实体识别☆128Updated 4 years ago
- code for ACL2020:《FLAT: Chinese NER Using Flat-Lattice Transformer》 我注释&修改&添加了部分源码,使得大家更容易复现这个代码。☆56Updated 5 years ago
- ☆279Updated 3 years ago
- Use deep models including BiLSTM, ABCNN, ESIM, RE2, BERT, etc. and evaluate on 5 Chinese NLP datasets: LCQMC, BQ Corpus, ChineseSTS, OCN…☆78Updated 3 years ago
- 基于词汇信息融合的中文NER模型☆170Updated 3 years ago
- 真 · “Deep Learning for Humans”☆142Updated 4 years ago
- CCKS2020 面向中文短文本的实体链指任务。主要思路为:使用基于BiLSTM和Attention的语义模型进行Query和Doc的文本匹配,再针对匹配度进行pairwise排序,从而选出最优的知识库实体。☆47Updated 4 years ago
- GPLinker_pytorch☆86Updated 3 years ago
- 本NER项目包含多个中文数据集,模型采用BiLSTM+CRF、BERT+Softmax、BERT+Cascade、BERT+WOL等,最后用TFServing进行模型部署,线上推理和线下推理。☆81Updated 4 years ago
- 整理一下在keras中使用T5模型的要点☆174Updated 3 years ago