gpeyre / 2017-EJAM-quantum-otLinks
G. Peyré, L. Chizat, F-X. Vialard, J. Solomon, Quantum Optimal Transport for Tensor Field Processing, Arxiv, 2016
☆10Updated 8 years ago
Alternatives and similar repositories for 2017-EJAM-quantum-ot
Users that are interested in 2017-EJAM-quantum-ot are comparing it to the libraries listed below
Sorting:
- Efficient Wasserstein Barycenter in MATLAB (for "Fast Discrete Distribution Clustering Using Wasserstein Barycenter with Sparse Support" …☆24Updated 6 years ago
- A collection of adaptive sparse multi-scale solvers for optimal transport and related optimization problems.☆53Updated 4 years ago
- Code for Fast Information-theoretic Bayesian Optimisation☆16Updated 7 years ago
- Gabriel Peyré, Marco Cuturi, Justin Solomon, Gromov-Wasserstein Averaging of Kernel and Distance Matrices, Proc. of ICML 2016.☆74Updated 9 years ago
- Rudi, A., Camoriano, R. and Rosasco, L., Less is more: Nyström computational regularization. In Advances in Neural Information Processing…☆12Updated 6 years ago
- Optimal Transport for Dummies - Code, slides and article☆33Updated 8 years ago
- python algorithms to solve sparse linear programming problems☆31Updated 2 years ago
- Code for "Accelerating Natural Gradient with Higher-Order Invariance"☆30Updated 6 years ago
- Uncertainty Autoencoders, AISTATS 2019☆56Updated 6 years ago
- Tensorflow implementation of preconditioned stochastic gradient descent☆34Updated last year
- Code for "Differentiable Compositional Kernel Learning for Gaussian Processes" https://arxiv.org/abs/1806.04326☆71Updated 7 years ago
- ☆29Updated 3 years ago
- Deep convolutional gaussian processes.☆80Updated 6 years ago
- Computing the eigenvalues of Neural Tangent Kernel and Conjugate Kernel (aka NNGP kernel) over the boolean cube☆47Updated 6 years ago
- L. Chizat, G. Peyré, B. Schmitzer, F-X. Vialard. Scaling Algorithms for Unbalanced Transport Problems. Preprint Arxiv:1607.05816, 2016.☆42Updated 8 years ago
- Pytorch implementation of SCAN: Learning Abstract Hierarchical Compositional Visual Concepts☆21Updated 7 years ago
- Learning generative models with Sinkhorn Loss☆30Updated 6 years ago
- TensorFlow implementation of Bayes-by-Backprop algorithm from "Weight Uncertainty in Neural Networks" paper☆51Updated 6 years ago
- tensorflow implementation of the Wasserstein (aka optimal transport) distance☆72Updated 4 years ago
- ☆67Updated 7 years ago
- A clean TensorFlow implementation of Concrete Dropout☆22Updated 7 years ago
- MMD, Hausdorff and Sinkhorn divergences scaled up to 1,000,000 samples.☆56Updated 6 years ago
- Wasserstein / earth mover's distance visualizations☆66Updated 8 years ago
- Neural Fixed-Point Acceleration for Convex Optimization☆29Updated 3 years ago
- Morgan A. Schmitz., Matthieu Heitz, Nicolas Bonneel, Fred Ngole, David Coeurjolly, Marco Cuturi, Gabriel Peyré, and Jean-Luc Starck. "Was…☆20Updated 5 years ago
- CUDA extension for the SPORCO project☆18Updated 4 years ago
- A Python implementation of Monge optimal transportation☆49Updated 2 years ago
- A Newton ADMM based solver for Cone programming.☆39Updated 8 years ago
- A study of performance of optimal transport.☆10Updated 5 years ago
- Implementations of the ICML 2017 paper (with Yarin Gal)☆38Updated 7 years ago