gpeyre / 2017-EJAM-quantum-ot
G. Peyré, L. Chizat, F-X. Vialard, J. Solomon, Quantum Optimal Transport for Tensor Field Processing, Arxiv, 2016
☆10Updated 7 years ago
Related projects ⓘ
Alternatives and complementary repositories for 2017-EJAM-quantum-ot
- Rudi, A., Camoriano, R. and Rosasco, L., Less is more: Nyström computational regularization. In Advances in Neural Information Processing…☆12Updated 5 years ago
- Optimal Transport for Dummies - Code, slides and article☆32Updated 7 years ago
- Code for "Accelerating Natural Gradient with Higher-Order Invariance"☆29Updated 5 years ago
- Gabriel Peyré. Entropic Approximation of Wasserstein Gradient Flows. SIAM Journal on Imaging Sciences, 8(4), pp. 2323–2351, 2015☆17Updated 7 years ago
- Gabriel Peyré, Marco Cuturi, Justin Solomon, Gromov-Wasserstein Averaging of Kernel and Distance Matrices, Proc. of ICML 2016.☆73Updated 8 years ago
- Python implementation of smooth optimal transport.☆56Updated 3 years ago
- Notebooks for IPAM Tutorial, March 15 2019☆24Updated 5 years ago
- Efficient Wasserstein Barycenter in MATLAB (for "Fast Discrete Distribution Clustering Using Wasserstein Barycenter with Sparse Support" …☆25Updated 5 years ago
- Scalable Log Determinants for Gaussian Process Kernel Learning (https://arxiv.org/abs/1711.03481) (NIPS 2017)☆18Updated 7 years ago
- Variational Auto-Regressive Gaussian Processes for Continual Learning☆20Updated 3 years ago
- ☆29Updated 2 years ago
- Code for Fast Information-theoretic Bayesian Optimisation☆16Updated 6 years ago
- Stochastic Optimization for Optimal Transport☆22Updated 8 years ago
- Look Ahead Hamiltonian Monte Carlo☆30Updated 9 years ago
- Morgan A. Schmitz., Matthieu Heitz, Nicolas Bonneel, Fred Ngole, David Coeurjolly, Marco Cuturi, Gabriel Peyré, and Jean-Luc Starck. "Was…☆18Updated 5 years ago
- Exercises for the Tutorial on Approximate Bayesian Inference at the Data Science Summer School 2018☆22Updated 6 years ago
- Code for "Modeling Sparse Deviations for Compressed Sensing using Generative Models", ICML 2018☆23Updated 6 years ago
- ☆13Updated 5 years ago
- Deep Gaussian Processes with Importance-Weighted Variational Inference☆38Updated 5 years ago
- Tensorflow Implementation of "Large-scale Optimal Transport and Mapping Estimation"(ICLR2018/NIPS 2017 OTML)☆19Updated 6 years ago
- Code for "Differentiable Compositional Kernel Learning for Gaussian Processes" https://arxiv.org/abs/1806.04326☆71Updated 6 years ago
- Code for Unbiased Implicit Variational Inference (UIVI)☆13Updated 5 years ago
- Code to compute the Stein discrepancy between a sample distribution and its target☆16Updated 7 years ago
- Computing the eigenvalues of Neural Tangent Kernel and Conjugate Kernel (aka NNGP kernel) over the boolean cube☆47Updated 5 years ago
- Implicit generative models and related stuff based on the MMD, in PyTorch☆16Updated 4 years ago
- A Python implementation of Monge optimal transportation☆48Updated last year
- see https://github.com/thangbui/geepee for a faster implementation☆37Updated 7 years ago
- A matlab toolbox to perform Wasserstein Dictionary Learning or NMF☆31Updated 8 years ago
- A pytorch version of hamiltonian monte carlo☆12Updated 5 years ago
- LIBS2ML: A Library for Scalable Second Order Machine Learning Algorithms☆10Updated 3 years ago