mstaib / stochastic-barycenter-code
Supporting code for "Parallel Streaming Wasserstein Barycenters"
☆10Updated 7 years ago
Alternatives and similar repositories for stochastic-barycenter-code:
Users that are interested in stochastic-barycenter-code are comparing it to the libraries listed below
- Stochastic Optimization for Optimal Transport☆22Updated 8 years ago
- Efficient Wasserstein Barycenter in MATLAB (for "Fast Discrete Distribution Clustering Using Wasserstein Barycenter with Sparse Support" …☆25Updated 5 years ago
- Python implementation of smooth optimal transport.☆57Updated 3 years ago
- Optimal transport and generalizations☆62Updated 5 years ago
- Morgan A. Schmitz., Matthieu Heitz, Nicolas Bonneel, Fred Ngole, David Coeurjolly, Marco Cuturi, Gabriel Peyré, and Jean-Luc Starck. "Was…☆18Updated 5 years ago
- A variational inference method with accurate uncertainty estimation. It uses a new semi-implicit variational family built on neural netwo…☆53Updated 5 months ago
- Black Box Variational Inference☆14Updated 9 years ago
- ☆12Updated 6 years ago
- Source code for Naesseth et. al. "Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms" (2017)☆39Updated 7 years ago
- Tensorflow code for "Hierarchical Decompositional Mixtures of Variational Autoencoders" (ICML'19)☆12Updated 4 years ago
- code release for the NIPS 2016 paper☆26Updated 8 years ago
- NeurIPS 2017 best paper. An interpretable linear-time kernel goodness-of-fit test.☆67Updated 5 years ago
- Natural Gradient, Variational Inference☆29Updated 5 years ago
- Sinkhorn Barycenters via Frank-Wolfe algorithm☆24Updated 5 years ago
- ☆40Updated 5 years ago
- L. Chizat, G. Peyré, B. Schmitzer, F-X. Vialard. Scaling Algorithms for Unbalanced Transport Problems. Preprint Arxiv:1607.05816, 2016.☆42Updated 8 years ago
- NeurIPS 2016. Linear-time interpretable nonparametric two-sample test.☆63Updated 6 years ago
- A suite of stochastic optimization methods for solving the empirical risk minimization problem.☆16Updated 5 years ago
- Code for http://proceedings.mlr.press/v80/dvurechensky18a.html☆16Updated 6 years ago
- Sliced Wasserstein Generator☆23Updated 6 years ago
- Source code for the ICML2019 paper "Subspace Robust Wasserstein Distances"☆28Updated 5 years ago
- Wasserstein regularization for sparse multi-task regression☆15Updated 4 years ago
- Scalable Log Determinants for Gaussian Process Kernel Learning (https://arxiv.org/abs/1711.03481) (NIPS 2017)☆18Updated 7 years ago
- AAAI & CVPR 2016: Preconditioned Stochastic Gradient Langevin Dynamics (pSGLD)☆35Updated 6 years ago
- Scalable Training of Inference Networks for Gaussian-Process Models, ICML 2019☆41Updated 2 years ago
- ☆42Updated 6 years ago
- Learning Generative Models across Incomparable Spaces (ICML 2019)☆27Updated 5 years ago
- Code for "Accelerating Natural Gradient with Higher-Order Invariance"☆30Updated 5 years ago
- Mixed Membership Stochastic Blockmodel Implementation with 3 Inference Schemes☆24Updated 9 years ago
- PyTorch implementation of Bidirectional Monte Carlo, Annealed Importance Sampling, and Hamiltonian Monte Carlo.☆52Updated 3 years ago