gaohongkui / GlobalPointer_pytorchLinks
全局指针统一处理嵌套与非嵌套NER的Pytorch实现
☆406Updated 2 years ago
Alternatives and similar repositories for GlobalPointer_pytorch
Users that are interested in GlobalPointer_pytorch are comparing it to the libraries listed below
Sorting:
- CMeIE/CBLUE/CHIP/实体关系抽取/SPO抽取☆237Updated 3 years ago
- Source code for AAAI 2022 paper: Unified Named Entity Recognition as Word-Word Relation Classification☆539Updated 3 years ago
- ☆467Updated 4 years ago
- 中文NER的那些事儿☆321Updated 2 years ago
- 基于词汇信息融合的中文NER模型☆170Updated 3 years ago
- SimCSE在中文上的复现,有监督+无监督☆280Updated 9 months ago
- CMeEE/CBLUE/NER实体识别☆132Updated 3 years ago
- 全局指针统一处理嵌套与非嵌套NER☆257Updated 4 years ago
- ☆279Updated 3 years ago
- Reimplement CasRel model in PyTorch.使用PyTorch对吉林大学CasRel模型进行复现,并在百度关系抽取数据集上训练测试。☆193Updated 3 years ago
- 本人项目进行中搜集的数据集,包含原始数据和经过处理后的数据,项目持续更新。☆117Updated 5 years ago
- GPLinker_pytorch☆86Updated 3 years ago
- Code for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling Using BERT Adapter"☆345Updated 3 years ago
- ☆420Updated last year
- 基于GOOGLE T5中文生成式模型的摘要生成/指代消解,支持batch批量生成,多进程☆227Updated 2 years ago
- GlobalPointer的优化版/NER实体识别☆123Updated 3 years ago
- Tplinker注释,中文数据集适配版本☆61Updated 4 years ago
- TPlinker for NER 中文/英文命名实体识别☆128Updated 4 years ago
- 基于GlobalPointer的实体/关系/事件抽取☆150Updated 3 years ago
- 基于Pytorch的命名实体识别框架,支持LSTM+CRF、Bert+CRF、RoBerta+CRF等框架☆90Updated 2 years ago
- 科大讯飞2020事件抽取挑战赛第一名解决方案&完整事件抽取系统☆539Updated 4 years ago
- OneRel在中文关系抽取中的使用☆133Updated 2 years ago
- Pytorch BERT-BiLSTM-CRF For NER☆423Updated 5 years ago
- A PyTorch implementation of a BiLSTM\BERT\Roberta(+CRF) model for Named Entity Recognition.☆511Updated 4 years ago
- NLP关系抽取:序列标注、层叠式指针网络、Multi-head Selection、Deep Biaffine Attention☆101Updated 4 years ago
- experiments of some semantic matching models and comparison of experimental results.☆163Updated last month
- 中文自然语言推理与语义相似度数据集☆365Updated 3 years ago
- Implemention of NER model on chinese dataset.☆74Updated 2 years ago
- 北京航空航天大学大数据高精尖中心自然语言处理研究团队对信息抽取领域的调研。包括实体识别,关系抽取,属性抽取等子任务,每类子任务分别对学术界和工业界进行调研。☆472Updated 3 years ago
- 端到端的长本文摘要模型(法研杯2020司法摘要赛道)☆399Updated last year