nilboy / gaic_track3_pair_simLinks
全球人工智能技术创新大赛-赛道三-冠军方案
☆239Updated 4 years ago
Alternatives and similar repositories for gaic_track3_pair_sim
Users that are interested in gaic_track3_pair_sim are comparing it to the libraries listed below
Sorting:
- NEZHA: Neural Contextualized Representation for Chinese Language Understanding☆260Updated 4 years ago
- ccf 2020 qa match competition top1☆267Updated 5 years ago
- 天池大赛疫情文本挑战赛线上第三名方案分享☆228Updated 5 years ago
- Knowledge Graph☆176Updated 3 years ago
- CoSENT、STS、SentenceBERT☆170Updated last year
- 小布助手对话短文本语义匹配的一个baseline☆138Updated 4 years ago
- GAIIC2022商品标题实体识别Baseline,使用GlobalPointer实现,线上0.80349☆52Updated 3 years ago
- NLP句子编码、句子embedding、语义相似度:BERT_avg、BERT_whitening、SBERT、SmiCSE☆178Updated 4 years ago
- A baseline for WenTianSearch☆86Updated 3 years ago
- 全局指针统一处理嵌套与非嵌套NER☆259Updated 4 years ago
- 真 · “Deep Learning for Humans”☆141Updated 4 years ago
- pytorch中文语言模型预训练☆387Updated 5 years ago
- a baseline to practice☆45Updated 4 years ago
- ☆277Updated 3 years ago
- A PyTorch-based toolkit for natural language processing☆160Updated 2 years ago
- 中文NLP数据集☆158Updated 6 years ago
- experiments of some semantic matching models and comparison of experimental results.☆163Updated 3 months ago
- “英特尔创新大师杯”深度学习挑战赛 赛道2:CCKS2021中文NLP地址要素解析☆148Updated 4 years ago
- 中文问题句子相似度计算比赛及方案汇总☆305Updated 5 years ago
- implementation several deep text match (text similarly) models for keras . cdssm, arc-ii,match_pyramid, mvlstm ,esim, drcn ,bimpm, bert, …☆291Updated 5 years ago
- 2020 CCF大数据与计算 智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案☆73Updated 4 years ago
- Pattern-Exploiting Training在中文上的简单实验☆173Updated 5 years ago
- 从头训练MASK BERT☆140Updated 3 years ago
- 2022搜狐校园算法大赛NLP赛道第一名开源方案(实验代码)☆89Updated 3 years ago
- 天池 疫情相似句对判定大赛 线上第一名方案☆434Updated 5 years ago
- ☆34Updated 4 years ago
- SimCSE在中文上的复现,有监督+无监督☆278Updated 11 months ago
- using bilstm-crf,bert and other methods to do sequence tagging task☆415Updated 2 years ago
- 中文无监督SimCSE Pytorch实现☆135Updated 4 years ago
- 基于tensorflow1.x的预训练模型调用,支持单机多卡、梯度累积,XLA加速,混合精度。可灵活训练、验证、预测。☆58Updated 4 years ago